
Probabilistic Sequential Matrix Factorization

Ö. Deniz Akyildiz

The Alan Turing Institute
University of Cambridge

Joint work with Gerrit J.J. van den Burg (Amazon Alexa), Theodoros Damoulas (War-

wick), Mark F. J. Steel (Warwick).

Background

The Probabilistic Model

Inference (Optimal and Approximate)

Parameter Estimation

Experimental results

Conclusions

Problem definition
Matrix factorization

We are interested in the problem factorizing a data matrix Y ∈ Rd×n

Y ≈ CX

with C ∈ Rd×r, the dictionary, and X ∈ Rr×n the coefficients.

Why is this useful?

Problem definition
Matrix factorization

We are interested in the problem factorizing a data matrix Y ∈ Rd×n

Y ≈ CX

with C ∈ Rd×r, the dictionary, and X ∈ Rr×n the coefficients.

Why is this useful?

Problem definition
Matrix factorization

× × × × ×
× × × × ×
× × × × ×

︸ ︷︷ ︸

Y

≈

× ×
× ×
× ×

︸ ︷︷ ︸

C

[
× × × × ×
× × × × ×

]
︸ ︷︷ ︸

X

I Dimensionality reduction of Y learning the dictionary C and
low-dimensional encodings X.

I Clustering, representation, interpretability.
I Missing data is easy to handle, reconstruction CX is a natural

imputation strategy.
Some use cases
I Image clustering, video sequence embedding and clustering
I Recommendation systems
I Genome data analysis
I Audio signal processing, separation, denoising, restoration

Problem definition
Matrix factorization

× × × × ×
× × × × ×
× × × × ×

︸ ︷︷ ︸

Y

≈

× ×
× ×
× ×

︸ ︷︷ ︸

C

[
× × × × ×
× × × × ×

]
︸ ︷︷ ︸

X

I Dimensionality reduction of Y learning the dictionary C and
low-dimensional encodings X.
I Clustering, representation, interpretability.

I Missing data is easy to handle, reconstruction CX is a natural
imputation strategy.

Some use cases
I Image clustering, video sequence embedding and clustering
I Recommendation systems
I Genome data analysis
I Audio signal processing, separation, denoising, restoration

Problem definition
Matrix factorization

× × × × ×
× × × × ×
× × × × ×

︸ ︷︷ ︸

Y

≈

× ×
× ×
× ×

︸ ︷︷ ︸

C

[
× × × × ×
× × × × ×

]
︸ ︷︷ ︸

X

I Dimensionality reduction of Y learning the dictionary C and
low-dimensional encodings X.
I Clustering, representation, interpretability.

I Missing data is easy to handle, reconstruction CX is a natural
imputation strategy.

Some use cases
I Image clustering, video sequence embedding and clustering
I Recommendation systems
I Genome data analysis
I Audio signal processing, separation, denoising, restoration

Problem definition
Matrix factorization

× × × × ×
× × × × ×
× × × × ×

︸ ︷︷ ︸

Y

≈

× ×
× ×
× ×

︸ ︷︷ ︸

C

[
× × × × ×
× × × × ×

]
︸ ︷︷ ︸

X

I Dimensionality reduction of Y learning the dictionary C and
low-dimensional encodings X.
I Clustering, representation, interpretability.

I Missing data is easy to handle, reconstruction CX is a natural
imputation strategy.

Some use cases
I Image clustering, video sequence embedding and clustering
I Recommendation systems
I Genome data analysis
I Audio signal processing, separation, denoising, restoration

Problem definition
Matrix factorization

The classical approach (also the most famous) is nonnegative matrix
factorization (Lee et al. 1999).

I This is an approach to find nonnegative C and X (for better
interpretability) by minimizing ‖Y − CX‖2F .

I A multiplicative gradient descent approach gives the update
rules (element-wise):

C ← C
(Y XT)

(CXXT)
(1)

X ← X
(CTY)

(CTCX)
. (2)

I The paper has 13649 citations as it currently stands...

Problem definition
Matrix factorization

The classical approach (also the most famous) is nonnegative matrix
factorization (Lee et al. 1999).
I This is an approach to find nonnegative C and X (for better

interpretability) by minimizing ‖Y − CX‖2F .

I A multiplicative gradient descent approach gives the update
rules (element-wise):

C ← C
(Y XT)

(CXXT)
(1)

X ← X
(CTY)

(CTCX)
. (2)

I The paper has 13649 citations as it currently stands...

Problem definition
Matrix factorization

The classical approach (also the most famous) is nonnegative matrix
factorization (Lee et al. 1999).
I This is an approach to find nonnegative C and X (for better

interpretability) by minimizing ‖Y − CX‖2F .
I A multiplicative gradient descent approach gives the update

rules (element-wise):

C ← C
(Y XT)

(CXXT)
(1)

X ← X
(CTY)

(CTCX)
. (2)

I The paper has 13649 citations as it currently stands...

Problem definition
Matrix factorization

The classical approach (also the most famous) is nonnegative matrix
factorization (Lee et al. 1999).
I This is an approach to find nonnegative C and X (for better

interpretability) by minimizing ‖Y − CX‖2F .
I A multiplicative gradient descent approach gives the update

rules (element-wise):

C ← C
(Y XT)

(CXXT)
(1)

X ← X
(CTY)

(CTCX)
. (2)

I The paper has 13649 citations as it currently stands...

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X

I Dynamic: We are interested in the case where Y is a Markovian
process (e.g. induced by a time-series dataset Y).

I Sequential: We want to process the columns of Y sequentially
in time in a scalable way.
××× × × × ×
××× × × × ×
×××︸︷︷︸
y1

× × × ×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C1

 ××× × × × ×
×××︸︷︷︸
x1

× × × ×

︸ ︷︷ ︸

X

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X
I Dynamic: We are interested in the case where Y is a Markovian

process (e.g. induced by a time-series dataset Y).

I Sequential: We want to process the columns of Y sequentially
in time in a scalable way.
××× × × × ×
××× × × × ×
×××︸︷︷︸
y1

× × × ×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C1

 ××× × × × ×
×××︸︷︷︸
x1

× × × ×

︸ ︷︷ ︸

X

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X
I Dynamic: We are interested in the case where Y is a Markovian

process (e.g. induced by a time-series dataset Y).
I Sequential: We want to process the columns of Y sequentially

in time in a scalable way.
××× × × × ×
××× × × × ×
×××︸︷︷︸
y1

× × × ×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C1

 ××× × × × ×
×××︸︷︷︸
x1

× × × ×

︸ ︷︷ ︸

X

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X
I Dynamic: We are interested in the case where Y is a Markovian

process (e.g. induced by a time-series dataset Y).
I Sequential: We want to process the columns of Y sequentially

in time in a scalable way.
× ××× × × ×
× ××× × × ×
× ×××︸︷︷︸

y2

× × ×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C2

× ××× × × ×
× ×××︸︷︷︸

x2

× × ×

︸ ︷︷ ︸

X

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X
I Dynamic: We are interested in the case where Y is a Markovian

process (e.g. induced by a time-series dataset Y).
I Sequential: We want to process the columns of Y sequentially

in time in a scalable way.
× × ××× × ×
× × ××× × ×
× × ×××︸︷︷︸

y3

× ×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C3

× × ××× × ×
× × ×××︸︷︷︸

x3

× ×

︸ ︷︷ ︸

X

Problem definition
Matrix factorization

What do we want to do?

We would like to develop an algorithm that is
I Probabilistic: We want to obtain approximate probability mea-

sures over C and X
I Dynamic: We are interested in the case where Y is a Markovian

process (e.g. induced by a time-series dataset Y).
I Sequential: We want to process the columns of Y sequentially

in time in a scalable way.
× × × ××× ×
× × × ××× ×
× × × ×××︸︷︷︸

y4

×

︸ ︷︷ ︸

Y

≈

××× ×××
××× ×××
××× ×××

︸ ︷︷ ︸

C4

× × × ××× ×
× × × ×××︸︷︷︸

x4

×

︸ ︷︷ ︸

X

The Probabilistic Model
A state-space formulation

The model:

y1 y2 · · · yk

x1x0 x2 · · · xk

Cθ

p(C) =MN (C;C0, Id, V0),

p(x0) = N (x0;µ0, P0)

pθ(xt|xt−1) = N (xt; fθ(xt−1), Qt)

p(yt|xt, C) = N (yt;Cxt, Rt),

(i) Ensures yt ≈ Cxt (which implies Y ≈ CX), (ii) encoding via fθ.

The Probabilistic Model
A state-space formulation

The model:

y1 y2 · · · yk

x1x0 x2 · · · xk

Cθ

p(C) =MN (C;C0, Id, V0),

p(x0) = N (x0;µ0, P0)

pθ(xt|xt−1) = N (xt; fθ(xt−1), Qt)

p(yt|xt, C) = N (yt;Cxt, Rt),

(i) Ensures yt ≈ Cxt (which implies Y ≈ CX), (ii) encoding via fθ.

Inference – Optimal and Approximate

Given a probabilistic model of the form:

c ∼ p(c),
x0 ∼ p(x0),

xk|xk−1 ∼ p(xk|xk−1),

yk|xk, c ∼ p(yk|xk, c),

how do we perform optimal inference?

To derive one step of the method, assume that p(c|y1:k−1) and
p(xk−1|y1:k−1) are known1.

1For k = 1, they are just priors, so this defines the full recursion if we describe
the one-step update.

Inference – Optimal and Approximate
prediction

Optimal: Given p(xk−1|y1:k−1), the first step of the algorithm per-
forms prediction:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

Note that this step is independent of the dictionary (given that past
marginal is known).

Approximate: We perform extended Kalman prediction given a Gaus-
sian approximation: p̃(xk−1|y1:k−1) = N (µk−1, Pk−1).

Inference – Optimal and Approximate
prediction

Optimal: Given p(xk−1|y1:k−1), the first step of the algorithm per-
forms prediction:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1.

Note that this step is independent of the dictionary (given that past
marginal is known).

Approximate: We perform extended Kalman prediction given a Gaus-
sian approximation: p̃(xk−1|y1:k−1) = N (µk−1, Pk−1).

Inference – Optimal and Approximate
update of c

Optimal: In order to compute updates, we define the incremental
marginal likelihood:

p(yk|y1:k−1) =

∫ ∫
p(yk|c, xk)p(xk|y1:k−1)p(c|y1:k−1)dxkdc.

Based on this, the dictionary update is given by

p(c|y1:k) = p(c|y1:k−1)
p(yk|c, y1:k−1)

p(yk|y1:k−1)
,

where

p(yk|c, y1:k−1) =

∫
p(yk|c, xk)p(xk|y1:k−1)dxk.

Inference – Optimal and Approximate
update of c

Optimal: In order to compute updates, we define the incremental
marginal likelihood:

p(yk|y1:k−1) =

∫ ∫
p(yk|c, xk)p(xk|y1:k−1)p(c|y1:k−1)dxkdc.

Based on this, the dictionary update is given by

p(c|y1:k) = p(c|y1:k−1)
p(yk|c, y1:k−1)

p(yk|y1:k−1)
,

where

p(yk|c, y1:k−1) =

∫
p(yk|c, xk)p(xk|y1:k−1)dxk.

Inference – Optimal and Approximate
update of c: Scalable and efficient inference with matrix updates

Approximate:

Proposition 1

Given p̃(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id) and the likelihood
p̃(yk|c, y1:k−1) = N (yk;Cµ̄k, ηk ⊗ Id) the approximate posterior is
p̃(c|y1:k) = N (c; ck, Vk ⊗ Id), where ck = vec(Ck) and the
posterior column-covariance matrix Vk is given by

Vk = Vk−1 −
Vk−1µ̄kµ̄

>
k Vk−1

µ̄>k Vk−1µ̄k + ηk
for k ≥ 1, (3)

and the posterior mean Ck of the dictionary C can be obtained in
matrix-form as

Ck = Ck−1 +
(yk − Ck−1µ̄k)µ̄

>
k V
>
k−1

µ̄>k Vk−1µ̄k + ηk
for k ≥ 1. (4)

Inference – Optimal and Approximate
update of xk

Optimal: The coefficients update is given by

p(xk|y1:k) = p(xk|y1:k−1)
p(yk|xk, y1:k−1)

p(yk|y1:k−1)
,

where

p(yk|xk, y1:k−1) =

∫
p(yk|xk, c)p(c|y1:k−1)dc.

Approximate: After some (Gaussian) approximations for p(yk|xk, y1:k−1),
the update is nothing but the standard extended Kalman update (see
the paper).

Inference – Optimal and Approximate
update of xk

Optimal: The coefficients update is given by

p(xk|y1:k) = p(xk|y1:k−1)
p(yk|xk, y1:k−1)

p(yk|y1:k−1)
,

where

p(yk|xk, y1:k−1) =

∫
p(yk|xk, c)p(c|y1:k−1)dc.

Approximate: After some (Gaussian) approximations for p(yk|xk, y1:k−1),
the update is nothing but the standard extended Kalman update (see
the paper).

Parameter estimation
Iterative and recursive

To estimate the parameters of fθ, we need to solve

θ? ∈ argmax
θ∈Θ

log pθ(y1:n), (5)

using gradient-based schemes (Kantas et al. 2015).

We consider two schemes:

I Iterative estimation: For relatively short sequences,

θi+1 = θi + γ∇ log pθ(y1:n)
∣∣
θ=θi

I Recursive estimation: Purely online estimation procedure for
long sequences.

θk+1 = θk + γ∇ log p̃θ(yk|y1:k−1)
∣∣
θ=θk

.

Parameter estimation
Iterative and recursive

To estimate the parameters of fθ, we need to solve

θ? ∈ argmax
θ∈Θ

log pθ(y1:n), (5)

using gradient-based schemes (Kantas et al. 2015).

We consider two schemes:
I Iterative estimation: For relatively short sequences,

θi+1 = θi + γ∇ log pθ(y1:n)
∣∣
θ=θi

I Recursive estimation: Purely online estimation procedure for
long sequences.

θk+1 = θk + γ∇ log p̃θ(yk|y1:k−1)
∣∣
θ=θk

.

Parameter estimation
Iterative and recursive

To estimate the parameters of fθ, we need to solve

θ? ∈ argmax
θ∈Θ

log pθ(y1:n), (5)

using gradient-based schemes (Kantas et al. 2015).

We consider two schemes:
I Iterative estimation: For relatively short sequences,

θi+1 = θi + γ∇ log pθ(y1:n)
∣∣
θ=θi

I Recursive estimation: Purely online estimation procedure for
long sequences.

θk+1 = θk + γ∇ log p̃θ(yk|y1:k−1)
∣∣
θ=θk

.

Parameter estimation
But what is the marginal log-likelihood?

Recall our approximation

p̃(yk|y1:k−1, c) = N (yk;Cfθ(µk−1), ηk ⊗ Id),

and the most recent dictionary posterior

p(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id).

Based on this, we can approximate the marginal by integrating out
c, which results in

− log p̃θ(yk|y1:k−1)
c
=
d

2
log
(
‖fθ(µk−1)‖2Vk−1

+ ηk

)
+

1

2

‖yk − Ck−1fθ(µk−1)‖2

ηk + ‖fθ(µk−1)‖2Vk−1

(6)

Simply, this is a “loss” arises from the model itself, which we optimise
w.r.t. θ using automatic differentiation.

Experimental results
A synthetic nonlinear periodic subspace

We consider the coefficient dynamics

xk = fθ(xk−1) = cos(2πθk + xk−1)

, where θ ∈ Rr+ and Qk = 0 for all k ≥ 1.
I This defines a deterministic subspace with highly periodic struc-

ture. We choose d = 20 and r = 6 and generate the data from
the model with θ? = 10−3 · [1, 2, 3, 4, 5, 6].

I We furthermore use iterative parameter estimation using the
Adam optimizer with standard parameterization.

I We generate Y using a random C and run the PSMF to infer
I C
I (xk)nk=1,
I The parameters θ

jointly.

Experimental results
A synthetic nonlinear periodic subspace

When the subspace model is well-calibrated, we can perform high-
dimensional time-series prediction.

(a) Observed time series (blue) with
unobserved future data (yellow) and
the reconstruction (red).

(b) True (blue) and learned (red)
subspace.

100 101 102

Iterations

50

100

150

200
Fr

ob
en

iu
s

no
rm

(c) Reconstruction error

Experimental results
Periodic modelling of air quality data (Beijing)

We have used the following (similar) model for real-world data.
I We have n = 439 observations and d = 3 variables (dew point,

temperature, and atmospheric pressure).
I We compare PSMF using a random walk subspace model,

xk = f(xk−1) = xk−1,

against a periodic subspace model

xk = fθ(xk−1) = θ1 sin(2πθ2k+θ3xk−1)+θ4 cos(2πθ5k+θ6xk−1).

I In both settings we use r = 1, run iterative PSMF with 100
iterations and fit C, (xk)

n
k=1, θ.

Experimental results
Periodic modelling of air quality data (Beijing)

(a) Random walk subspace model. (b) Periodic subspace model.

Figure: Comparison of random walk and periodic subspace models on a
time series of weather measurements in Beijing. This shows that with the
appropriate subspace model, PSMF correctly identifies the nonlinear dy-
namics of the data and accurately extrapolates into the future. Observed
time series (blue) with unobserved future data (yellow) and the reconstruc-
tion (red).

Experimental results
Missing data imputation, air quality data for London

NO2 PM10 PM25 S&P500 Gas

PSMF 0.76 0.76 0.92 0.83 0.89
rPSMF 0.85 0.89 0.87 0.83 0.86
MLE-SMF 0.43 0.56 0.80 0.48 0.56

Average coverage proportion of the missing data by the 2σ uncer-
tainty bars of the posterior predictive estimates, averaged over 100
repetitions.

To sum up, we relied on

I the assumed Kronecker structure on the covariance of the prior
on C which results in tractable matrix updates,

I the extended Kalman updates and automatic differentiation to
obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

To sum up, we relied on
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,

I the extended Kalman updates and automatic differentiation to
obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

To sum up, we relied on
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ

I gradient descent on the approximate (and tractable) marginal
likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

To sum up, we relied on
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ
I gradient descent on the approximate (and tractable) marginal

likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ

I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

To sum up, we relied on
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ
I gradient descent on the approximate (and tractable) marginal

likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

To sum up, we relied on
I the assumed Kronecker structure on the covariance of the prior

on C which results in tractable matrix updates,
I the extended Kalman updates and automatic differentiation to

obtain the Jacobian of the coefficient dynamics fθ
I gradient descent on the approximate (and tractable) marginal

likelihood p̃θ(yt|y1:t−1) to optimise the parameters of fθ
I leverage (again) automatic differentiation
I take advantage of modern non-convex optimisers, such as Adam.

the algorithm performed well on all tasks and we also developed a
robust version handling t-likelihoods.

Our reliance on automatic differentiation makes the future applica-
tions easy and fruitful. Some future directions

I the use of neural networks for coefficient dynamics fθ
I the use of ODE/PDE solvers as fθ (physics informed PSMF).
I the use of switching Markov processes to model (xk)k≥1.

Our reliance on automatic differentiation makes the future applica-
tions easy and fruitful. Some future directions
I the use of neural networks for coefficient dynamics fθ

I the use of ODE/PDE solvers as fθ (physics informed PSMF).
I the use of switching Markov processes to model (xk)k≥1.

Our reliance on automatic differentiation makes the future applica-
tions easy and fruitful. Some future directions
I the use of neural networks for coefficient dynamics fθ
I the use of ODE/PDE solvers as fθ (physics informed PSMF).

I the use of switching Markov processes to model (xk)k≥1.

Our reliance on automatic differentiation makes the future applica-
tions easy and fruitful. Some future directions
I the use of neural networks for coefficient dynamics fθ
I the use of ODE/PDE solvers as fθ (physics informed PSMF).
I the use of switching Markov processes to model (xk)k≥1.

Thanks!

The citation:

Akyildiz, O. D., van den Burg, G., Damoulas, T., & Steel, M. (2021,
March). Probabilistic sequential matrix factorization. In Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS
2021) (pp. 3484-3492). PMLR.

References I

Lee, Daniel D. and H. Sebastian Seung (Oct. 1999). “Learning the
parts of objects by non-negative matrix factorization”. In: Nature
401.6755, pp. 788–791.

Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro (2010).
“Online learning for matrix factorization and sparse coding”. In:
The Journal of Machine Learning Research 11, pp. 19–60.

Mnih, Andriy and Ruslan R Salakhutdinov (2008). “Probabilistic ma-
trix factorization”. In: Advances in neural information processing
systems, pp. 1257–1264.

Salakhutdinov, Ruslan and Andriy Mnih (2008). “Bayesian probabilis-
tic matrix factorization using Markov chain Monte Carlo”. In: Pro-
ceedings of the 25th international conference on Machine learning.
ACM, pp. 880–887.

References II

Cemgil, Ali Taylan (Jan. 2009). “Bayesian Inference for Nonnegative
Matrix Factorisation Models”. In: Computational Intelligence and
Neuroscience, 4:1–4:17. ISSN: 1687-5265.

Kantas, Nikolas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski,
and Nicolas Chopin (2015). “On particle methods for parame-
ter estimation in state-space models”. In: Statistical Science 30.3,
pp. 328–351.

–backup slides–

Experimental results
Changepoint detection

Consider a dataset of form

0

10

20

-20

-10

0

-10

0

10

0

10

20

-20

-10

0

-20

-10

0

10

0

5

10

-10

-5

0

5

-100

-50

0

-10

-5

0

5

-10

-5

0

-100

-50

0

-20

-10

0

10

0

20

40

-10

0

10

20

-20

-10

0

10

-10

0

10

-40

-20

0

-20

-10

0

-5

0

5

10

Experimental results
Changepoint detection

In order to infer the changepoint, we design a Gaussian process (GP)
model using the SDE representation of Matern-3/2 process

dxi(t) =

[
0 1
−κ2 −2κ

]
xi(t)dt+

[
0
1

]
dwi(t) (7)

where xi(t) = [xi(t), dxi(t)/dt], ν = 3/2, and κ =
√

2ν/`. We
choose σ2 = 0.1 and ` = 0.1 and discretize this SDE with the
step-size γ = 0.001. We discretize the SDEs for i = 1, . . . , r and
construct a joint state which leads to a linear dynamical system in
2r dimensions for which we can run PSMF.

Experimental results
Changepoint detection

What does (xk)k≥1 look like?

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15

Comparison to classical changepoint detection methods:

Degrees of freedom of t-contamination

1.5 1.6 1.7 1.8 1.9

PELT-PSMF 85% 89% 92% 94% 95%
PELT-Data 76% 81% 83% 85% 85%
MBOCPD 54% 58% 61% 69% 72%

Experimental results
Missing data imputation, air quality data for London

Random walk model is useful if we are just interested in imputation.

Imputation RMSE Runtime (s)

NO2 PM10 PM25 S&P500 Gas NO2 PM10 PM25 S&P500 Gas

PSMF 5.72
(0.13)

7.44
(0.31)

3.55
(0.23)

11.56
(2.42)

6.16
(1.07)

2.76 2.61 1.91 9.37 96.75

rPSMF 5.73
(0.22)

7.54
(0.45)

3.50
(0.21)

10.24
(1.67)

6.18
(1.51)

2.93 2.03 2.02 13.06 111.89

MLE-SMF 11.17
(0.58)

9.50
(0.31)

4.90
(0.36)

30.20
(0.83)

111.16
(19.95)

2.54 2.38 1.69 9.72 87.22

TMF 7.73
(0.14)

8.08
(0.22)

4.65
(0.31)

34.90
(0.79)

74.80
(8.64)

1.03 0.97 0.65 4.19 34.23

PMF* 10.51
(0.06)

10.49
(0.18)

4.05
(0.18)

40.69
(1.43)

23.77
(0.05)

1.96 1.72 0.61 2.79 28.35

BPMF* 9.22
(0.20)

8.50
(0.20)

3.68
(0.18)

27.64
(0.65)

18.31
(0.28)

2.89 2.71 1.61 3.68 91.30

Imputation error and runtime on several datasets using 30% missing
values, averaged over 100 random repetitions. An asterisk marks
offline methods.

	Background
	The Probabilistic Model
	Inference (Optimal and Approximate)
	Parameter Estimation
	Experimental results
	Conclusions
	References

