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Complex Numerical Models

* Solve thousands of equations
on very large computers

 Take many hours to run

e \We cannot afford
many runs

e But we want do
Inference




Complex Numerical Models

Real world Mathematical Model Discretised model

Problem PDEs FE/FD Computer code Emulator



‘Black Box’ Model

What is a black box model?
We cannot change the model code
(Non-intrusive methods)

Work on propriety models or commercial codes



Inference

Uncertainty quantification
Sensitivity Analysis
Uncertainty Analysis

Inverse Modelling (calibration)



Two Levels of Inference

 |nference to build the emulator

 |Inference to relate the numerical model to the real
world (calibration, tuning, inverse modelling)



Building emulators
(Modelling Models)

Use a Gaussian process (shallow learning)

Include mean term; low order polynomials

Could just use polynomials (lightweight emulators)

Deep learning



Where does the uncertainty come from?

e Even for deterministic models

* The model inputs are uncertain

] Inputs(x) Outputs(y)
e The model structure is —_— —_—
uncertain T V\

e Some models are themselves
stochastic (COVID)




Monte Carlo
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Emulators

 Emulators are surrogate models with the addition of a
measure of uncertainty.

 \We use Gaussian processes

* Emulators are fast to evaluate, less than a second on a
laptop vs many hours on an HPC
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Uncertainty Quantification

* Prediction
e Sensitivity Analysis
* Uncertainty Analysis

e Model Calibration



Design

e Where do we do the

model runs
e Space filling Y
e Sequential design

Input 1



One Shot Designs

e Latin Hypercubes
 Maximin Latin hypercubes

* Low discrepancy sequences



The Latin Hypercube
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The Latin Hypercube

We don't have an algorithm for the optimal Latin
hypercube

What is a good Latin hypercube?
Maximin

Orthogonal designs



A Latin Hypercube
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Input 2
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Estimation for Emulation

* Either MLE or Bayes

 Non-linear parameters (length scales, nuggets) either
plug in or full Bayes



The role of Nuggets

A nugget is a white noise term added to the GP model
In geo-statistics used for instrumental noise

But we have deterministic models

Stochastic models different

Nuggets included for numerical reasons



* Likelihood surface complex

 Other maxima/posteriors



Relationship between models and the real world

 Models are designed to inform us about the real world
 They are not the same as the real world

 The real world is not a set of equations

* The discretised equations are not the continuum equations

 The code is not the discretised equations



All models are wrong, but some are useful

George Box



Model Discrepancy

e [t is important to take model discrepancy into account

e Least squares or Bayesian calibration will give the
wrong answer

* And the uncertainty will go to zero as you increase the
amount of dat



Kennedy and O’Hagan (2001)

 Kennedy and O’Hagan came up with an ingenious
solution

 Model the difference between the model and reality as
the sum of two GPs

* One is the emulator of the model and the other is the
discrepancy



Identifiability

This fine for prediction (we know the sum of the GPs)
But suffers from identifiability problems
Strong priors

Constrain the discrepancy or the emulator



An Alternative

Don't try to find the ‘best’ set of inputs ()

Find inputs (z) that are implausible given the data

(y)

This Is a |lot easier
No optimisation

No sampling posterior



History Matching

e Set up a measure of the distance between the data
and the model prediction

 JE(y— f(x))?
e = \/ Viy = f(2))

e |f this distance is too far. That value of z Is
implausible



We can expand the variance term to give

[y —=E(f(x)))?
Imp\/ Vy + Vi)

Where V, is the variance of y
and V;¢,) is the variance of f(z)

—or Imp >3 we say that the inputs (z) are
implausible (Pukelsheim (1994))




* put could be expensive to run in which case we
can only compute Imp in a small number of places

* Replace f(z) with our emulator f*(z)



Expanding the variance as before gives

S \/ y — E(f(x))’

Vy =+ Vemul =+ Vdisc

v, Is the variance of the data y

V.my: 1S the emulator variance

* Viisc IS the model discrepancy



Proceqgure

Collect data
Run designed experiment
Build emulator

Perform history matching

All points with Imp <3 deemed not implausible
If we have many metrics take maz (Imp)

These constitute the Not Ruled Out Yet (NROY) space



Design additional experiment within NROY space
(wave 2)

Rebuild emulator

Istory match

Repeat until NROY is either small enough or does
not shrink

At which point we may need more data
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A Cardiac Model

Thanks to Steve Neiderer, KCL/St Thomas
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6% of the parameter space

Wave 2
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5% of the parameter space

Wave 3
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Research Topics

Geometry of NROY

Stochastic models

Deep learning emulators

Hierarchical models - Exascale computing
Dynamical Emulators

Interaction between physical and computer exits



