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Complex Numerical Models
• Solve thousands of equations 

on very large computers


• Take many hours to run

• We cannot afford 
many runs


• But we want do 
inference



Complex Numerical Models

Real world 
Problem

Mathematical Model 
PDEs

Discretised model 
FE/FD Computer code Emulator



‘Black Box’ Model

• What is a black box model?


• We cannot change the model code


• (Non-intrusive methods)


• Work on propriety models or commercial codes



Inference
• Uncertainty quantification


• Sensitivity Analysis


• Uncertainty Analysis


• Inverse Modelling (calibration)



Two Levels of Inference

• Inference to build the emulator


• Inference to relate the numerical model to the real 
world (calibration, tuning, inverse modelling)



Building emulators 
(Modelling Models)

• Use a Gaussian process (shallow learning)


• Include mean term; low order polynomials 


• Could just use polynomials (lightweight emulators)


• Deep learning



Where does the uncertainty come from?

• Even for deterministic models


• The model inputs are uncertain 


• The model structure is 
uncertain


• Some models are themselves 
stochastic (COVID)



Monte Carlo

• Classical method 


• Requires many thousands of runs


• We cannot afford that



Emulators
• Emulators are surrogate models with the addition of a 

measure of uncertainty.


• We use Gaussian processes


• Emulators are fast to evaluate, less than a second on a 
laptop vs many hours on an HPC
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Uncertainty Quantification
• Prediction


• Sensitivity Analysis


• Uncertainty Analysis


• Model Calibration



Design

• Where do we do the 
model runs


• Space filling


• Sequential design



One Shot Designs

• Latin Hypercubes


• Maximin Latin hypercubes


• Low discrepancy sequences



The Latin Hypercube
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The Latin Hypercube

• We don’t have an algorithm for the optimal Latin 
hypercube 

• What is a good Latin hypercube? 

• Maximin 

• Orthogonal designs



A Latin Hypercube
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A maximin LHC
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Sequential Designs



fOTL(x) , d = 6

#Evaluations/d

fpiston(x) , d = 7

#Evaluations/d



Estimation for Emulation

• Either MLE or Bayes


• Non-linear parameters (length scales, nuggets) either 
plug in or full Bayes



The role of Nuggets
• A nugget is a white noise term added to the GP model


• In geo-statistics used for instrumental noise 


• But we have deterministic models


• Stochastic models different


• Nuggets included for numerical reasons



• Likelihood surface complex


• Other maxima/posteriors


•



Relationship between models and the real world

• Models are designed to inform us about the real world


• They are not the same as the real world


• The real world is not a set of equations


• The discretised equations are not the continuum equations


• The code is not the discretised equations



George Box

All models are wrong, but some are useful



Model Discrepancy
• It is important to take model discrepancy into account


• Least squares or Bayesian calibration will give the 
wrong answer


• And the uncertainty will go to zero as you increase the 
amount of dat



Kennedy and O’Hagan (2001)
• Kennedy and O’Hagan came up with an ingenious 

solution


• Model the difference between the model and reality as 
the sum of two GPs


• One is the emulator of the model and the other is the 
discrepancy



Identifiability
• This fine for prediction (we know the sum of the GPs)


• But suffers from identifiability problems


• Strong priors


• Constrain the discrepancy or the emulator



An Alternative
• Don’t try to find the ‘best’ set of inputs (x) 

• Find inputs (x) that are implausible given the data 
(y) 

• This is a lot easier 

• No optimisation 

• No sampling posterior



History Matching
• Set up a measure of the distance between the data 

and the model prediction 

• If this distance is too far. That value of x is 
implausible

Imp =

s
E(y � f(x))2

V (y � f(x))



• We can expand the variance term to give 

• Where Vy is the variance of y 

• and Vf(x) is the variance of f(x) 

• For Imp >3 we say that the inputs (x) are 
implausible (Pukelsheim (1994))

Imp =

s
(y � E(f(x)))2

Vy + Vf(x)



• but could be expensive to run in which case we 
can only compute Imp in a small number of places 

• Replace f(x) with our emulator f*(x)



• Expanding the variance as before gives 

• Vy is the variance of the data y 

• Vemul is the emulator variance 

• Vdisc is the model discrepancy

Imp =

s
y � E(f(x))2

Vy + Vemul + Vdisc



Procedure
• Collect data 

• Run designed experiment 

• Build emulator 

• Perform history matching 

• All points with Imp <3 deemed not implausible 

• If we have many metrics take max(Imp) 

• These constitute the Not Ruled Out Yet (NROY) space



• Design additional experiment within NROY space 
(wave 2) 

• Rebuild emulator  

• History match 

• Repeat until NROY is either small enough or does 
not shrink 

• At which point we may need more data







A Cardiac Model

Thanks to Steve Neiderer, KCL/St Thomas



Wave 1: 25% of the parameter space 
remains

44



Wave 2: 6% of the parameter space 
remains

45



Wave 3: 5% of the parameter space 
remains

46





Research Topics 
• Geometry of NROY


• Stochastic models


• Deep learning emulators


• Hierarchical models - Exascale computing


• Dynamical Emulators


• Interaction between physical and computer exits


