BACKWARD AND INVERSE
 Opportunities for Probnum in Machine Learning

Philipp Hennig
Heilbronn Workshop - 27 March 2022

EBERHARD KARLS UNIVERSITAT TUBINGEN

Faculty of Science
Department of Computer Science
CHAIR FOR THE METHODS OF MACHINE LEARNING
Many thanks to our supporter and sponsors:
erc

黎 $|$| Federal Ministry |
| :--- |
| of Education |
| and Research |

Filip Tronarp

Nathanael Bosch

Jonathan Schmidt

Marvin Pförtner

A very 2021 inference task

Is this

- a machine learning task? (regress on $I(t)$) doesn't work withouth mechanistic knowledge

Is this

- a machine learning task? (regress on $I(t)$) doesn't work withouth mechanistic knowledge
- a simulation problem? (solve SIRD ODE) we don't know β, though!
- an inverse problem (estimate β)

$$
\frac{d}{d t}\left[\begin{array}{c}
S(t) \\
I(t) \\
R(t) \\
V(t) \\
D(t)
\end{array}\right]=\left[\begin{array}{c}
-\beta(t) S(t) /(t) / P-v(t) \\
\beta(t) S(t) /(t) / P-\gamma I(t)-\eta l(t) \\
\gamma I(t) \\
v(t) \\
\eta l(t)
\end{array}\right]
$$ we really care about $I(t)$, though!

$$
x^{\prime}(t)=f(x(t), u(t)), \quad p(y \mid x)=\prod_{n}^{N} \mathcal{N}\left(y_{n} ; H\left(x\left(t_{n}\right)\right), \Sigma_{n}\right), \quad p(x)=\mathcal{G} \mathcal{P}\left(m_{x}, k_{x}\right), \quad p(u)=\mathcal{G} \mathcal{P}\left(m_{u}, k_{u}\right)
$$

An inverse problem seems to be

- another word for an inference problem (inferring latent quantities from observations) (wikipedia).
- about inferring the objext x in $y=D(x)$, where D is a known operator (here: the ODE integral) from data y.
In both cases, it seems the tough part, arguably, is the ill-posedness. But the data y is already probabilistic, too!

Solving Inverse Problems with Backprop

- Define some loss $L(u)$, e.g.

$$
L(u):=\sum_{i}-\log p\left(y_{i} \mid \hat{x}(u)\right)=\sum_{i}\left(y_{i}-H(\hat{x}(u))\right)^{2}+\text { const.. }
$$

- Compute the gradient $\nabla_{u} L\left(u^{(i)}\right)$ with automatic differentiation. Examples:
- numppyro tutorial, using jax's dopri5
- Turing.jı tutorial, using diffeq.jl solvers

Note how the user is discouraged from even thinking about the ODE solver.

scipy.integrate.solve_ivp(f,t_span, $\left.x_{-} \theta\right) \quad \Rightarrow \quad$ probnum.diffeq.probsolve_ivp(f,t_span, $\left.x _0\right)$

$$
x^{\prime}(t)=f(x(t), t), \quad x\left(t_{0}\right)=x_{0}
$$

- Use a tractable (linear Gaussian) stochastic differential equation as a prior for the intractable solution of the nonlinear ordinary differential equation

$$
d X(t)=F X(t) d t+L d W(t) \quad \text { with } \quad X^{(i)}(t)=\frac{d^{i}}{d t^{\prime}} x(t), i=1, \ldots, \nu
$$

- Consider information operators Z_{i} to link evaluations of the vector field f to x
- run the extended Kalman filter (EKF) to propagate uncertainty through f.

procedure ExtendedFilter $\left(m_{t-1}, P_{t-1}, A, Q, H, R, y\right)$

$$
\begin{aligned}
& m_{t}^{-}=A m_{t-1} \\
& P_{t}^{-}=A P_{t-1} A^{\top}+Q \\
& r=y-H m_{t}^{-} \\
& S=H P_{t}^{-} H^{\top}+R \\
& K=P_{t}^{-} H^{\top} S^{-1} \\
& m_{t}=m_{t}^{-}+K r \\
& P_{t}=(I-K H) P_{t}^{-} \\
& \text {return }\left(m_{t}, P_{t}\right),\left(m_{t}^{-}, P_{t}^{-}\right) \\
& \text {end procedure } \\
& / / \text { predictive meanm with } A=\int \exp (F(\Delta t)) \\
& / / \text { predictive covariance, with } Q=\int_{0}^{\Delta t} e^{E \tau} L L T e^{F \tau} d \tau \\
& / / \text { residual, with } y=0, H=\partial h_{10} /\left.\partial x\right|_{X=m_{t}^{-}} \\
& \text {// innovation covariance } \\
& \text { // gain } \\
& \text { // updated mean } \\
& \text { // updated covariance }
\end{aligned}
$$

Returning to our "Inverse Problem"

$$
\frac{d}{d t}\left[\begin{array}{c}
S(t) \\
I(t) \\
R(t) \\
V(t) \\
D(t)
\end{array}\right]=\left[\begin{array}{c}
-\beta(t) S(t) /(t) / P-v(t) \\
\beta(t) S(t) /(t) / P-\gamma I(t)-\eta /(t) \\
\gamma /(t) \\
v(t) \\
\eta /(t)
\end{array}\right]
$$

to solve ODE $\frac{d}{d t} x(t)=f(x(t), t)$, model with SDE $d X(t)=F_{X} X(t) d t+L_{X} d W_{X}(t)$ and observation model (information operator)

$$
Z_{m} \mid X\left(t_{m}\right) \sim \delta\left(E_{X}^{(1)} X\left(t_{m}\right)-f\left(E_{X}^{(0)} X\left(t_{m}\right)\right)\right.
$$

Not forward/inverse, but mixed information

natively (within same "forward" solve) combine with physical observations of the trajectory

$$
Y_{n} \mid X\left(t_{n}\right) \sim \mathcal{N}\left(H E_{X}^{0} X\left(t_{n}\right), R\right)
$$

Eberhard Karis UNIVERSITAT TUBINGEN

propagate uncertainty about ODE (e.g. from a latent force U) through the extended Kalman filter to solve $\frac{d}{d t} x(t)=f(x(t), u(t), t)$ with $d U(t)=F_{U} U(t) d t+L_{U} d W_{U}(t)$.

No more black box ODE solvers

Addiotnal Information can be added, too

Infer the parameters θ of IVP ξ_{θ} measured with Gaussian noise at solution x

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \xi_{\theta}(t)=f_{\theta}\left(\xi_{\theta}(t)\right), \quad \phi_{\theta}(0)=x_{0}, \quad p(y \mid x)=\prod_{i} \mathcal{N}\left(y_{i} ; H^{\top} x, R_{\theta}\right)
$$

- We'd like to compute the marginal

$$
p(y \mid \theta)=\int p(y \mid x) \delta\left(x-\xi_{\theta}\right) d x
$$

Prior Hyperparameters as Regularizers

Summary

- Propagation of Uncertainty is great, but should not mislead us to keep the rigid structure of classical code
- instead, sometimes, information (the opposite of uncertainty) shouldn't be propagated, but combined efficiently
- because Probnum methods can deal with imprecise quantities natively, changing the order of the computation does not pose a conceptual problem for them. (That doesn't mean changing the order is always a good idea. But it's also not necessarily a bad idea).
- doing so can break the (artificial) separation between forward and inverse problems.

Re-casting computation as inference allows genuinely new, valuable functionality.

Uhttp: $\% / \mathrm{mm1}$. inf uni-tuebingen. de
1 Probabilistic Numerics - Computation as Machine Learning. P. Hennig; H. Kersting, M.A. Osborne, CUP, 2022

- https://www.youtube.com/c/TübingenML
@PhilippHennig5

