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A very 2021 inference task
Mixed Information Sources Schmidt, Krämer, Hennig, 2021, NeurIPS 2021
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Is this
▶ a machine learning task? (regress on I(t))

doesn’t work withouth mechanistic knowledge

▶ a simulation problem? (solve SIRD ODE)
we don’t know β, though!

▶ an inverse problem (estimate β)
we really care about I(t), though!

d
dt


S(t)
I(t)
R(t)
V(t)
D(t)

 =


−β(t)S(t)I(t)/P− v(t)

β(t)S(t)I(t)/P− γI(t)− ηI(t)
γI(t)
v(t)
ηI(t)
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What is an Inverse Problem?
Mechanistic Knowledge and mixed information sources

x′(t) = f(x(t), u(t)), p(y | x) =
∏N

n N (yn;H(x(tn)),Σn), p(x) = GP(mx, kx), p(u) = GP(mu, ku)

An inverse problem seems to be
▶ another word for an inference problem (inferring latent quantities from observations) (wikipedia).
▶ about inferring the objext x in y = D(x), where D is a known operator (here: the ODE integral) from

data y.
In both cases, it seems the tough part, arguably, is the ill-posedness. But the data y is already
probabilistic, too!
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Solving Inverse Problems with Backprop
automatic differentiation in simulation

x̂^ ODEsolve(f, u(i))

L(u(i)) = log p(y | x̂(u(i)))

u(i) = u(i−1) + α∇uL(u(i))

wh
il
e
L
>

to
l

▶ Define some loss L(u), e.g.

L(u) :=
∑

i

− log p(yi | x̂(u)) =
∑

i

(yi − H(x̂(u)))2 + const..

▶ Compute the gradient∇uL(u(i)) with automatic differentiation. Examples:
▶ numppyro tutorial, using jax’s dopri5
▶ Turing.jl tutorial, using diffeq.jl solvers

Note how the user is discouraged from even thinking about the ODE solver.
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https://num.pyro.ai/en/latest/examples/ode.html
https://github.com/google/jax/blob/main/jax/experimental/ode.py
https://turing.ml/stable/tutorials/10-bayesian-differential-equations/
https://diffeq.sciml.ai


The Probabilistic View on ODEs
[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, …]

x′(t) = f(x(t), t), x(t0) = x0
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scipy.integrate.solve_ivp(f,t_span,x_0) ⇒ probnum.diffeq.probsolve_ivp(f,t_span,x_0)
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Simulation as Filtering
probabilistic ODE solvers can be realised as Kalman filters Tronarp, Kersting, Särkkä, PH, Statistics & Computing 29(6): 1297–1315

X0 . . . Xj−1 Xj Xj+1 . . . XT

ODE
z0 Zm Zm+1

z0 | X(t0) ∼ δ(x(t0)− x0) Zm | X(tm) ∼ δ(X(1)(tm)− f(X(0)(tm)))
▶ Use a tractable (linear Gaussian) stochastic differential equation as a prior for the intractable

solution of the nonlinear ordinary differential equation

dX(t) = FX(t) dt+ LdW(t) with X(i)(t) =
di

dti
x(t), i = 1, . . . , ν

▶ Consider information operators Zi to link evaluations of the vector field f to x
▶ run the extended Kalman filter (EKF) to propagate uncertainty through f.
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Simulation as Filtering
probabilistic ODE solvers can be realised as Kalman filters Tronarp, Kersting, Särkkä, PH, Statistics & Computing 29(6): 1297–1315

X0 . . . Xj−1 Xj Xj+1 . . . XT

ODE
z0 Zm Zm+1

1 procedure EXTENDEDFILTER(mt−1, Pt−1, A,Q,H, R, y)
2 m−

t = Amt−1 � predictive meanm with A =
∫

exp(F(∆t))

3 P−t = APt−1A⊺ + Q � predictive covariance, with Q =
∫ ∆t
0 eFτ LL⊺eFτ dτ

4 r = y− Hm−
t � residual, with y = 0, H = ∂h10/∂X|X=m−

t

5 S = HP−t H⊺ + R � innovation covariance

6 K = P−t H⊺S−1 � gain

7 mt = m−
t + Kr � updated mean

8 Pt = (I− KH)P−t � updated covariance

9 return (mt, Pt), (m−
t , P

−
t )

10 end procedure
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Returning to our “Inverse Problem”
The real world is not described by an ODE, but regression alone doesn’t help either Schmidt, Krämer, Hennig, 2021, NeurIPS 2021
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d
dt


S(t)
I(t)
R(t)
V(t)
D(t)

 =


−β(t)S(t)I(t)/P− v(t)

β(t)S(t)I(t)/P− γI(t)− ηI(t)
γI(t)
v(t)
ηI(t)
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Not forward/inverse, but mixed information
blurring the boundaries of the black box [Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021]

X0 . . . Xj−1 Xj Xj+1 . . . XT

ODE
Zm Zm+1

Data Yn YN

to solve ODE d
dtx(t) = f(x(t), t), model with SDE dX(t) = FXX(t) dt+ LXdWX(t) and observation model

(information operator)
Zm | X(tm) ∼ δ(E(1)X X(tm)− f(E(0)X X(tm))
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Not forward/inverse, but mixed information
blurring the boundaries of the black box [Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021]

X0 . . . Xj−1 Xj Xj+1 . . . XT

ODE
Zm Zm+1

Data Yn YN

natively (within same “forward” solve) combine with physical observations of the trajectory

Yn | X(tn) ∼ N (HE0XX(tn), R)
8



Not forward/inverse, but mixed information
blurring the boundaries of the black box [Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021]

X0 . . . Xj−1 Xj Xj+1 . . . XT

Data Yn YN

ODE
Zm Zm+1

U0 . . . Uj−1 Uj Uj+1 . . . UT

propagate uncertainty about ODE (e.g. from a latent force U) through the extended Kalman filter to
solve d

dtx(t) = f(x(t), u(t), t) with dU(t) = FUU(t) dt+ LUdWU(t).
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No more black box ODE solvers
Example: Covid modelling Schmidt, Krämer, Hennig, 2021, NeurIPS 2021
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Addiotnal Information can be added, too
Information Operator for Hamiltonians and other conserved quantities Bosch, Tronarp, PH, AISTATS 2022 (arXiv 2110.10770)

Nathanael Bosch, Filip Tronarp, Philipp Hennig
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Figure 4: Work-precision diagram of numerical solvers with and without energy conservation. Additional
information about the total energy in the dynamical Hénon–Heiles system can improve the accuracy of the
solution (left). This comes with additional computational cost and increases the runtime (center). But as a result,
the total energy is conserved more strictly and solutions become more physically meaningful (right).

where the Hamiltonian H : Rd ⇥Rd ! R describes the
total energy in the dynamical system. Hamiltonian
problems form an important class of ODEs in the con-
text of geometric numerical integration (Hairer et al.,
2006) since their trajectories preserve the Hamiltonian.
That is, for a solution (p(t), q(t)) of such problems, the
Hamiltonian H(p(t), q(t)) is constant, and it holds

g (p(t), q(t)) := H(p(t), q(t))�H(p(0), q(0)) ⌘ 0.
(22)

Geometric integrators aim to preserve this structure
in their numerical approximation. In the following,
we present a probabilistic solver for Hamiltonian prob-
lems that includes this additional information into its
inference process to improve its solution estimates.

Solver Setup The problems considered in this sec-
tion can all be written as second-order ODEs, with
(ẏ, y) := (p, q). Together with the conservation law
of Eq. (22), this motivates a partitioned measurement
model z(t, Y ) := [z1(t, Y )|, z2(t, Y )|]|, with

z1(t, Y ) := Y
(2) � f

⇣
Y

(0)
⌘
, (23a)

z2(t, Y ) := g(Y (1)
, Y

(0)), (23b)

where f denotes the vector field of the corresponding
ODE. As in the previous section, all considered methods
rely on exact linearizations of the measurement models.
In addition, the solvers perform a partitioned EKF up-
date. That is, they separately linearize and update first
on the ODE information z1 and then on the conserved
quantity z2 – a procedure that parallels established
“projection methods” used with non-probabilistic ODE
solvers (Hairer et al., 2006, Section IV.4).

Problem Setting We mainly consider the Hénon–
Heiles model which describes a star moving around a
galactic center (Henon and Heiles, 1964). The full prob-
lem definition is given in Supplement A.5. We compare
probabilistic solvers with and without additional infor-
mation about the conservation of energy, for various

Figure 5: Conservation stabilizes long simulations.
Probabilistic numerical simulations of the Hénon–Heiles
problem over long time horizons, computed with adap-
tive steps and low precision, deteriorate over time (mid-
dle) and deviate strongly from the true trajectory (left).
By including energy-preservation into the solver, long-
term simulations become more accurate (right).

orders (q 2 {3, 8}). All solvers use adaptive steps and
dynamic diffusion models. Since we evaluate the error
at the final time point, smoothing is not required.

Results Figure 4 shows the results in multiple work-
precision diagrams. We observe that the additional
information leads, in some configurations, to improved
accuracies, but comes with an increase in absolute run-
time. However, the probabilistic solvers enforce the con-
servation of energy very strictly – even in comparison
to non-probabilistic approaches that are particularly
well suited for this problem setting, including a Runge–
Kutta solver (Tsit5; Tsitouras, 2011) combined with a
projection method (Hairer et al., 2006, Section IV.4), a
Runge–Kutta–Nyström solver (DPRKN6; Dormand and
Prince, 1987), and a symplectic integrator (KahanLi8;
Kahan and Li, 1997). This structural preservation is
of major concern to obtain physically meaningful solu-
tions and stable long-term simulations of Hamiltonian
systems (Hairer et al., 2006). The conservation of en-
ergy is therefore often of higher importance than a
sole reduction in the (Euclidean) error. Following this
motivation, Fig. 5 shows how energy preservation sta-
bilizes long-term simulations with probabilistic solvers.
Finally, Fig. 6 demonstrates on the Kepler problem

Pick-and-Mix Information Operators for Probabilistic ODE Solvers

Table 1: Common problem settings and corresponding information operators.

Description Equation Information operator

First-order ODE ẏ(t) = f (y(t), t) z(t, Y ) := Y
(1) � f

�
Y

(0)
, t
�

Second-order ODE ÿ(t) = f (ẏ(t), y(t), t) z(t, Y ) := Y
(2) � f

�
Y

(1)
, Y

(0)
, t
�

Mass matrix DAE Mẏ(t) = f (y(t), t) z(t, Y ) := MY
(1) � f

�
Y

(0)
, t
�

Invariances g (y(t), ẏ(t)) = 0 z(t, Y ) := g
�
Y

(0)
, Y

(1)
�

Chain rule ÿ(t) = Jf (y(t)) · ẏ(t) z(t, Y ) := Y
(2) � Jf

�
Y

(0)
�
· Y (1)

the approximate inference algorithm itself (the EKF;
see Section 2.2) does not rely on the specific form of
the measurements; except for calibration and step-size
adaptation, which we separately discuss below. To
extend the ODE filter framework, we consider more
general information operators, of the form

Z 2 Iy := {Z : Z[y] ⌘ 0} . (13)

As before, they map some unknown function of interest
y to the known zero function. But, this general form
is not restricted to first-order ODEs. For example,
given an energy-preserving system with second-order
dynamics, we can formulate a corresponding operator
to define its probabilistic solution (as will be shown
in Section 4.3). Table 1 provides a summary of the
problem settings and the corresponding operators con-
sidered in this paper, written in the functional form
z(t, Y ) := Z[Y (0)](t). Before moving to our case stud-
ies, where each model will be explained in more detail,
we discuss practical details and implementation.

Inference with Multiple Information Operators
Some problems of interest provide multiple types of
information about the true solution, for example as
additional derivatives (Section 4.2) or physical con-
servation laws (Section 4.3). Formally, this amounts
to an information operator Z 2 Iy that can be par-
titioned as Z[y] = [Z1[y]|,Z2[y]|]

|, with Z1,Z2 2 Iy,
and corresponding functional representation

z(t, Y ) = [z1(t, Y )|, z2(t, Y )|]| . (14)

It is still possible to update jointly on both measure-
ment models in a single EKF update step on z; this
strategy is chosen in Section 4.2. However, performing
two separate update steps can sometimes be preferable
(Raitoharju and Piché, 2019; Raitoharju et al., 2016,
2017). In this case, each measurement model is lin-
earized separately in the partially updated state. This
strategy is chosen in Section 4.3.

Calibration and Step-Size Adaptation The ap-
proaches for calibration and adaptive step-size selec-
tion discussed in Section 2.3 do not strictly depend
on the specific information operator, but they were

developed in the context of first-order ODEs (Bosch
et al., 2021). There, the information operator is d-
dimensional, i.e. z(t, Y ) 2 Rd, and describes the local
defect. We found that this formulation can be extended
to settings with a different problem structure (in this
work, second-order ODEs and DAEs), but for settings
with multiple sources of information (here, additional
derivatives or invariances) special care has to be taken.
To conveniently consider user-specified relative toler-
ance levels, the local error should be of the same di-
mension as the ODE solution. Thus, in Sections 4.2
and 4.3, only the part of the measurement model that
relates to the given differential equation is considered
for calibration and step-size adaptation.

4 CASE STUDIES

We evaluate the presented framework in four case stud-
ies. First, we apply the probabilistic solver to second-
order ODEs. We investigate the difference between
solving such problems directly, by selecting the correct
information operator, and solving the algebraically (but
not numerically) equivalent first-order ODEs. Second,
we augment the probabilistic numerical solver for first-
order ODEs with second-derivative information, which
can be computed from the ODE via the chain rule.
Third, we consider Hamiltonian systems in which the
total energy is conserved over time, and we evaluate
the influence of this information on the probabilistic
numerical solution. Fourth, we demonstrate how prob-
abilistic solvers can be extended to solve semi-explicit
differential-algebraic equations.

Implementation The implementation follows the
practices suggested by Krämer and Hennig (2020) and
includes exact initialization, preconditioned state tran-
sitions, and a square-root implementation. All experi-
ments are implemented in the Julia programming lan-
guage (Bezanson et al., 2017). Reference solutions are
computed with DifferentialEquations.jl (Rackauckas
and Nie, 2017). All experiments run on a single,
consumer-level CPU. Code for the implementation and
experiments is publicly available on GitHub.1

1Code will be published upon acceptance.
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Stationary Inverse Problems as GP Hyperparameter Inference
Tronarp, Bosch, Hennig. Fenrir: Physics-Enhanced Regression for Initial Value Problems arXiv 2202.01287

Infer the parameters θ of IVP ξθ measured with Gaussian noise at solution x

d
dt
ξθ(t) = fθ(ξθ(t)), ϕθ(0) = x0, p(y | x) =

∏
i

N (yi;H⊺x, Rθ)

▶ We’d like to compute the marginal

p(y | θ) =
∫

p(y | x)δ(x− ξθ) dx

▶ Approximate δ with a Gaussian

p̂(y | θ) =
∫

p(y | x)δ̂N(x− ξθ) dx

11



Prior Hyperparameters as Regularizers
Tronarp, Bosch, Hennig. Fenrir: Physics-Enhanced Regression for Initial Value Problems arXiv 2202.01287
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Summary
▶ Propagation of Uncertainty is great, but should not mislead us to keep the rigid structure of

classical code
▶ instead, sometimes, information (the opposite of uncertainty) shouldn’t be propagated, but

combined efficiently
▶ because Probnum methods can deal with imprecise quantities natively, changing the order of the

computation does not pose a conceptual problem for them. (That doesn’t mean changing the
order is always a good idea. But it’s also not necessarily a bad idea).

▶ doing so can break the (artificial) separation between forward and inverse problems.

Re-casting computation as inference allows genuinely new, valuable functionality.

http://mml.inf.uni-tuebingen.de

Probabilistic Numerics – Computation as Machine Learning. P. Hennig, H. Kersting, M.A. Osborne, CUP, 2022
https://www.youtube.com/c/TübingenML

@PhilippHennig5
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High-Dimensional ODEs/PDEs
Factorization assumptions allow scaling to millions of dimensions Krämer, Bosch, Schmidt, PH, arXiv 2110.11812

Probabilistic ODE Solutions in Millions of Dimensions

Figure 1: Simulating a high-dimensional ODE: Probabilistic solution of a discretised FitzHugh-Nagumo PDE
model (Ambrosio and Françoise, 2009). Means (a-e) and standard-deviations (f-j), t0 = 0 (left) to tmax = 20
(right). The patterns in the uncertainties match those in the solution. The simulated ODE is 125k-dimensional.

tuitively, ODE filters are a fusion of ODE solvers and
Gaussian process models—two classes of algorithms
that su↵er from high dimensionality. More precisely,
the problem is that probabilistic solvers require matrix-
matrix operations at each step. The matrices have
O(d2) entries, which leads to O(d3) complexity for a
single solver step and has made the solution of high-
dimensional ODEs impossible. ODE filters are essen-
tially nonlinear, approximate Gaussian process infer-
ence schemes (with a lot of structure). As in the GP
community (e.g. Quiñonero-Candela and Rasmussen,
2005), the path to low computational cost in these
models is via factorisation assumptions.

Contributions Our main contribution is to prove in
which settings ODE filters admit an implementation in
O(d) complexity. Thereby, they become a class of algo-
rithms comparable to explicit Runge–Kutta methods
not only in estimation performance (error contraction
as a function of evaluations of f ; Kersting et al., 2020b;
Tronarp et al., 2021) but also in computational complex-
ity (cost per evaluation of f). The resulting algorithms
deliver uncertainty quantification and other benefits of
probabilistic ODE solvers on high-dimensional ODEs
(see Fig. 1. The ODE from this figure will be explored
in more detail in Section 5). The key novelties of the
present work are threefold:

1. Acceleration via independence: A-priori, ODE fil-
ters commonly assume independent ODE dimen-
sions (e.g. Kersting et al., 2020b). We single out
those inference schemes that naturally preserve

independence. Identification of independence-
preserving ODE solvers is helpful because each
ODE dimension can be updated separately. The
performance implications are that a single matrix-
matrix operation with O(d2) entries is replaced
with d matrix-matrix operations with O(1) entries.
In other words, O(d) instead of O(d3) complexity
for a single solver step. This is Proposition 3.

2. Calibration of multivariate output-scales: A single
ODE system often models the interaction between
states that occur on di↵erent scales. It is useful to
acknowledge di↵ering output scales in the “di↵u-
sivity” of the prior (details below). We generalise
the calibration result by Bosch et al. (2021) to the
class of solvers that preserve the independence of
the dimensions. This is Proposition 2.

3. Acceleration via Kronecker structure: Sometimes,
prior independence assumptions may be too restric-
tive. For instance, one might have prior knowl-
edge of correlations between ODE dimensions (Ex-
ample 4 in Section 4). Fortunately, a subset of
probabilistic ODE solvers can exploit and preserve
Kronecker structure in the system matrices of the
state space. Preserving the Kronecker structure
brings over the performance gains from above to
dependent priors. This is Proposition 6.

Additional minor contributions are detailed where they
occur. To demonstrate the scalability of the result-
ing algorithm, the experiments in Section 5 showcase
simulations of ODEs with dimension d ⇠ 107.
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