BACKWARD AND INVERSE Opportunities for Probnum in Machine Learning

Philipp Hennig Heilbronn Workshop – 27 March 2022

Many thanks to our supporter and sponsors:

The Men in Black

Filip Tronarp

Nico Krämer

Nathanael Bosch

Jonathan Schmidt

Marvin Pförtner

A very 2021 inference task

Mixed Information Sources

UNIVERSITAT TÜBINGEN Schmidt, Krämer, Hennig, 2021, NeurIPS 2021

Is this

 a machine learning task? (regress on *I*(*t*)) doesn't work withouth mechanistic knowledge

A very 2021 inference task

Mixed Information Sources

UNIVERSITAT TÜBINGEN Schmidt, Krämer, Hennig, 2021, NeurIPS 2021

Is this

- a machine learning task? (regress on *I*(*t*)) doesn't work withouth mechanistic knowledge
- a simulation problem? (solve SIRD ODE) we don't know β, though!
- an *inverse* problem (estimate β) we really care about *I*(*t*), though!

$$\frac{d}{dt} \begin{bmatrix} S(t)\\ l(t)\\ R(t)\\ V(t)\\ D(t) \end{bmatrix} = \begin{bmatrix} -\beta(t)S(t)l(t)/P - v(t)\\ \beta(t)S(t)l(t)/P - \gamma l(t) - \eta l(t)\\ \gamma l(t)\\ v(t)\\ \eta l(t) \end{bmatrix}$$

Mechanistic Knowledge and mixed inform<u>ation sources</u>

$$x'(t) = f(x(t), u(t)), \quad p(\mathbf{y} \mid x) = \prod_{n=1}^{N} \mathcal{N}(y_n; H(x(t_n)), \Sigma_n), \quad p(x) = \mathcal{GP}(m_x, k_x), \quad p(u) = \mathcal{GP}(m_u, k_u)$$

An *inverse problem* seems to be

- > another word for an *inference* problem (inferring latent quantities from observations) (wikipedia).
- ▶ about inferring the objext x in y = D(x), where D is a known operator (here: the ODE integral) from data y.

In both cases, it seems the tough part, arguably, is the ill-posedness. But the data *y* is already probabilistic, too!

Solving Inverse Problems with Backprop

automatic differentiation in simulation

▶ Define some loss L(u), e.g.

$$L(u) := \sum_{i} -\log p(y_i \mid \hat{x}(u)) = \sum_{i} (y_i - H(\hat{x}(u)))^2 + \text{const.}.$$

- Compute the gradient $\nabla_u L(u^{(i)})$ with automatic differentiation. Examples:
 - numppyro tutorial, using jax's dopri5
 - Turing.jl tutorial, using diffeq.jl solvers

Note how the user is discouraged from even thinking about the ODE solver.

[Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

$$x'(t) = f(x(t), t), \quad x(t_0) = x_0$$

(Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

(Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

(Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

(Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

(Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016, Tronarp, Kerstin, P.H., 2019, Bosch, Tronarp, P.H., 2021, ...]

 $x'(t) = f(x(t), t), \quad x(t_0) = x_0$

 $scipy.integrate.solve_ivp(f,t_span,x_0) \quad \Rightarrow \quad probnum.diffeq.probsolve_ivp(f,t_span,x_0)$

Simulation as Filtering

TUBINGEN

probabilistic ODE solvers can be realised as Kalman filters

 $z_0 \mid X(t_0) \sim \delta(X(t_0) - X_0) \qquad Z_m \mid X(t_m) \sim \delta(X^{(1)}(t_m) - f(X^{(0)}(t_m)))$

Use a tractable (linear Gaussian) stochastic differential equation as a prior for the intractable solution of the nonlinear ordinary differential equation

$$dX(t) = FX(t) dt + LdW(t)$$
 with $X^{(i)}(t) = \frac{d^i}{dt^i}x(t), i = 1, \dots, \nu$

Consider *information operators Z_i* to link evaluations of the vector field *f* to *x* run the *extended Kalman filter (EKF)* to propagate uncertainty through *f*.

Simulation as Filtering

obabilistic ODE solvers can be realised as Kalman filter:

Tronarp, Kersting, Särkkä, PH, Statistics & Computing 29(6): 1297-1315

procedure EXTENDEDFILTER $(m_{t-1}, P_{t-1}, A, O, H, R, v)$ $m_{t}^{-} = Am_{t-1}$ 2 $P_{t}^{-} = AP_{t-1}A^{T} + 0$ 3 $r = y - Hm_t^-$ 4 $S = HP_t^-HT + R$ 5 6 $K = P_t^{-}H^{T}S^{-1}$ $m_t = m_t^- + Kr$ $P_t = (I - KH)P_t^-$ 8 return $(m_t, P_t), (m_t^-, P_t^-)$ 9 10 end procedure

Returning to our "Inverse Problem"

The real world is not described by an ODE, but regression alone doesn't help either

Schmidt, Krämer, Hennia, 2021, NeurIPS 2021

60

Not forward/inverse, but mixed information

blurring the boundaries of the black box

Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021

to solve ODE $\frac{d}{dt}x(t) = f(x(t), t)$, model with SDE $dX(t) = F_XX(t) dt + L_X dW_X(t)$ and observation model (information operator)

$$Z_m \mid X(t_m) \sim \delta(E_X^{(1)}X(t_m) - f(E_X^{(0)}X(t_m)))$$

Not forward/inverse, but mixed information

blurring the boundaries of the black box

Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021

natively (within same "forward" solve) combine with physical observations of the trajectory

 $Y_n \mid X(t_n) \sim \mathcal{N}(HE^0_X X(t_n), R)$

Not forward/inverse, but mixed information

blurring the boundaries of the black box

. Tronarp, Kersting, Särkkä, Hennig, 2019; Schmidt, Krämer, Hennig, , NeurIPS 2021

propagate uncertainty about ODE (e.g. from a latent force *U*) through the extended Kalman filter to solve $\frac{d}{dt}x(t) = f(x(t), u(t), t)$ with $dU(t) = F_UU(t) dt + L_UdW_U(t)$.

No more black box ODE solvers

Example: Covid modelling

UNIVERSITAT TUBINGEN Schmidt, Krämer, Hennig, 2021, NeurIPS 2021

Addiotnal Information can be added, too

Information Operator for Hamiltonians and other conserved quantities

Description	Equation	Information operator
First-order ODE Second-order ODE Mass matrix DAE	$ \begin{split} \dot{y}(t) &= f\left(y(t), t\right) \\ \ddot{y}(t) &= f\left(\dot{y}(t), y(t), t\right) \\ M \dot{y}(t) &= f\left(y(t), t\right) \end{split} $	$ \begin{split} & z(t,Y) := Y^{(1)} - f\left(Y^{(0)},t\right) \\ & z(t,Y) := Y^{(2)} - f\left(Y^{(1)},Y^{(0)},t\right) \\ & z(t,Y) := MY^{(1)} - f\left(Y^{(0)},t\right) \end{split} $
Invariances Chain rule	$g(y(t), \dot{y}(t)) = 0$ $\ddot{y}(t) = J_f(y(t)) \cdot \dot{y}(t)$	$ \begin{aligned} & z(t,Y) := g\left(Y^{(0)}, Y^{(1)}\right) \\ & z(t,Y) := Y^{(2)} - J_f\left(Y^{(0)}\right) \cdot Y^{(1)} \end{aligned} $

Fronarp, Bosch, Hennig. Fenrir: Physics-Enhanced Regression for Initial Value Problems

Infer the parameters heta of IVP $\xi_{ heta}$ measured with Gaussian noise at solution x

$$\frac{\mathrm{d}}{\mathrm{d}t}\xi_{\theta}(t) = f_{\theta}(\xi_{\theta}(t)), \qquad \phi_{\theta}(0) = x_{0}, \qquad p(\mathbf{y} \mid x) = \prod_{i} \mathcal{N}(y_{i}; H^{\mathsf{T}}x, R_{\theta})$$

▶ We'd like to compute the marginal

л.

$$p(\mathbf{y} \mid \theta) = \int p(\mathbf{y} \mid \mathbf{x}) \delta(\mathbf{x} - \xi_{\theta}) \, \mathrm{d}\mathbf{x}$$

• Approximate δ with a Gaussian

$$\hat{p}(\mathbf{y} \mid \theta) = \int p(\mathbf{y} \mid x) \hat{\delta}_N(x - \xi_\theta) \, \mathrm{d}x$$

Prior Hyperparameters as Regularizers

Tronarp, Bosch, Hennig. Fenrir: Physics-Enhanced Regression for Initial Value Problems

Summary

- Propagation of Uncertainty is great, but should not mislead us to keep the rigid structure of classical code
- instead, sometimes, information (the opposite of uncertainty) shouldn't be propagated, but combined efficiently
- because Probnum methods can deal with imprecise quantities natively, changing the order of the computation does not pose a conceptual problem for them. (That doesn't mean changing the order is always a good idea. But it's also not necessarily a bad idea).
- ▶ doing so can break the (artificial) separation between forward and inverse problems.

Re-casting computation as inference allows genuinely new, valuable functionality.

🗂 http://mml.inf.uni-tuebingen.de

- Probabilistic Numerics Computation as Machine Learning. P. Hennig, H. Kersting, M.A. Osborne, CUP, 2022
- https://www.youtube.com/c/TübingenML
- 🖉 @PhilippHennig5

High-Dimensional ODEs/PDEs

Factorization assumptions allow scaling to millions of dimensions

TÜBINGEN 🌼 Krämer, Bosch, Schmidt, PH, arXiv 2110.11812

60