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Gaussian process interpolation

• Let 5 : [−1, 1] → R be the data-generating function.

• Let  : [−1, 1] × [−1, 1] → R be a positive-definite covariance kernel.

• Let G1, . . . , G= ∈ [−1, 1] be distinct sampling points.

Model 5 as a Gaussian process 5GP ∼ GP(0,  ) and obtain the noiseless data

D= ( 5 ) = {(G1, 5 (G1)), . . . , (G=, 5 (G=))}.

The conditional mean and variance are

`= (G) = KKK= (G)TKKK−1
=,=fff= and V= (G) =  (G, G) −KKK= (G)TKKK−1

=,=KKK= (G). (1)

Which kernel  to use?
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Gaussian kernel

 (G, H) = exp
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Common default kernel

probnum/quad/solvers/bayesian_quadrature.py:
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Natural extension of the Matérn class

Let

 a (G, H) =
21−a

Γ(a)

(√
2a |G − H |
_

)a
Ka

(√
2a |G − H |
_

)
be the Matérn kernel of order a > 0. Then

 a (G, H) →  (G, H) as a →∞.

The convergence to the Gaussian kernel occurs naturally:

Theorem [Karvonen 2022, Corollary 3.6]
Suppose that the points {G8}=8=1 are sufficiently uniform on [−1, 1]. If the
data-generating function 5 : [−1, 1] → R is infinitely differentiable, then

lim
=→∞

âML (=) = lim
=→∞

âLOO-CV (=) = ∞.

Karvonen (2022). Asymptotic bounds for smoothness parameter estimates in
Gaussian process regression. arXiv:2203.05400.
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The Gaussian kernel and its RKHS are interesting

• Karvonen & Särkkä (2019). Gaussian kernel quadrature at scaled Gauss–Hermite
nodes. BIT Numerical Mathematics, 59(4):877–902.

• Karvonen & Särkkä (2020). Worst-case optimal approximation with increasingly flat
Gaussian kernels. Advances in Computational Mathematics, 46:21.

• Karvonen, Tanaka & Särkkä (2021). Kernel-based interpolation at approximate Fekete
points. Numerical Algorithms, 87(1):445–468.

• Karvonen, Oates & Girolami (2021). Integration in reproducing kernel Hilbert spaces
of Gaussian kernels. Mathematics of Computation, 90(331):2209–2233.

• Karvonen (2022). Small sample spaces for Gaussian processes. Bernoulli. To appear.

But please do not use it!
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Nothing new here

Stein (1999). Interpolation of Spatial Data: Some Theory for Kriging.
Springer.

“That is, it is possible to predict / (C) perfectly for all C > 0 based on
observing / (B) for all B ∈ (−Y, 0] for any Y > 0.” [p. 30]

“However, as I previously argued in the one-dimensional setting, random
fields possessing these autocovariance functions are unrealistically smooth for
physical phenomena.” [p. 55]

“I strongly recommend not using autocovariance functions of the form
�4−0C

2 to model physical processes.” [pp. 69–70, in subsection “More
criticism of Gaussian autocovariance functions”]
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The Gaussian kernel is not robust

• The prior imposed by the Gaussian kernel is too strong.

• The prior is not only smooth, it is “super smooth”.

Implications:

1. Not robust with respect to sampling point placement.

2. Not numerically robust.

3. Non-robust uncertainty quantification. (Likely)
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Analytic functions

Let � ⊆ R be an open interval.

Analytic function
A function 5 : � → R is analytic on � if it is infinitely differentiable
and equal to its Taylor series in the neighbourhood of every 0 ∈ �:

5 (G) =
∞∑
:=0

5 (:) (0)
:!

(G − 0):

for some Y > 0 and all G ∈ � such that |G − 0 | < Y.

For analytic functions local information is global information.
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The Gaussian kernel is “very analytic”

Necessary conditions for analyticity
A function 6 : R→ R is analytic if either of the following holds:
1. supG∈R |6 (:) (G) | ≤ �: :! for some � > 0 and every : ∈ N0.
2. The function is integrable and there are � > 0 and U > 0 such that

|6̂(b) | ≤ � exp(−U |b |) for all b ∈ R.

Let  (G, H) = q(G − H) for q(A) = 4−A2/(2_2) . Then

sup
A ∈R
|q (:) (A) | ≤ (2ℓ2)−:/2

√
(2:)!
:!
≤ 21(_):

√
:! (2)

and [21(_), 22(_) > 0]

|q̂(b) | = 22(_) exp
(
− _

2

2
|b |2

)
. (3)
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Variance is weakly dependent on sampling points

Theorem [work in progress]
There are positive constants �1 and �2 such that

�1(_)
1
√
=

(
4

4_2

)=
=−= ≤ sup

G∈[−1,1]
V= (G) ≤ �2(_)

1
=

(
84
_2

)=
=−= (4)

for any sampling points {G8}=8=1.

Variance decays to zero globally even if the sampling points do not
cover the domain.

=⇒ The Gaussian kernel is not robust against badly placed sampling
points.
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Ill-conditioning

Condition number
The condition number ^(AAA) of a symmetric matrix AAA is

^(AAA) =
����_max(AAA)
_min(AAA)

���� = ���� largest eigenvalue of AAA
smallest eigenvalue of AAA

���� .
Large condition number = numerically unstable matrix inversion
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The uncertainty principle

In GP interpolation we need to compute

KKK−1
=,=KKK= (G), where (KKK=,=)8 9 =  (G8 , G 9). (5)

Theorem [Schaback 1995, Theorem 2.1]
Let  be any positive-definite kernel. Then

^(KKK=+1,=+1) ≥
1

V= (G=+1)
.

Fast decay of conditional variance = ill-conditioned kernel matrix

[Of course, one can do something else than solve (5) directly.]

Schaback (1995). Error estimates and condition numbers for radial basis function
interpolation. Advances in Computational Mathematics, 3:251–264.
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Condition number for the Gaussian kernel

Theorem [consequence of the uncertainty principle]
For the Gaussian kernel we have

^(KKK=+1,=+1) ≥ �1(_)
√
=

(
_2

44

)=
==

for any sampling points.

In contrast, for  =Matérn-a and sufficiently uniform points,

^(KKK=+1,=+1) ≥ �2(_) =2a−1.
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Uncertainty quantification
We want the conditional variance to reflect the approximation error:

• Ideally,
| 5 (G) − `= (G) | ≈ V= (G)1/2 (6)

• Or at minimum,

| 5 (G) − `= (G) | ≤ 0=V= (G)1/2 (7)

for a sequence (0=)∞==1 which does not grow “too fast” as =→∞.

For Matérn kernels there are result which say that, essentially,

| 5 (G) − `= (G) | ≤ �
√
= f̂ML(=) V= (G)1/2. (8)

Karvonen, Wynne, Tronarp, Oates & Särkkä (2020). Maximum likelihood estimation
and uncertainty quantification for Gaussian process approximation of deterministic functions.
SIAM/ASA Journal on Uncertainty Quantification, 8(3):926–958.
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Misspecification and scale estimation

• Let f̂(=) be any scale estimator of f > 0 in the parametrisation
 f (G, H) = f2 (G, H). For example,

f̂ML (=)2 =
fffT=KKK−1

=,=fff=
=

. (9)

• Let 5 : [−1, 1] → R be a finitely smooth function such that

sup
G∈[−1,1]

| 5 (G) − `= (G) | ≈ =−U for U > 0. (10)

and recall that

sup
G∈[−1,1]

V= (G)1/2 ≈ A= =−=/2 for A > 0. (11)

• To achieve, say,

| 5 (G) − `= (G) | ≈
√
= f̂(=)V= (G)1/2 (12)

we thus would need

f̂(=) ≈ =−U−1/2A−===/2. (13)
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The Cauchy kernel
What if you really want to use a smooth prior? The Cauchy kernel is

 (G, H) = 1
1 + (G − H)2/_2 = q(G − H). (14)

Properties of the Cauchy kernel [quite easy to prove]
It holds that [results for the Gaussian in parentheses]

sup
G∈R
|q (:) (G) | ≤ _−: :!,

[
≤ 21 (_):

√
:!

]
(15)

|q̂(b) | ≤ _
2

exp(−_ |b |)
[
≤ 22 (_) exp

(
− _

2

2
|b |2

) ]
(16)

and
V= (G) ≤ �1 (_)

1
√
=

(
16
_2

)= [
≤ �2 (_)

1
=

(
84
_2

)=
=−=

]
(17)

for any sampling points (RHS does not tend to zero if _ < 4).

Dette & Zhigljavsky (2021). Reproducing kernel Hilbert spaces, polynomials, and the
classical moment problem. SIAM/ASA Journal on Uncertainty Quantification, 9(4):1589–1614. 16 / 17



The role of sampling points

General principle in numerical analysis:
• Finitely smooth approximation (e.g., Matérn GPs) works with any

sampling points.
• Infinitely smooth approximation does not. [e.g., Runge’s

phenomenon]

To approximate using an infinitely smooth functions the sampling
points {G8}=8=1 need to be selected carefully (e.g., Chebyshev nodes).

But this is typically not done in GP interpolation.

=⇒ Do not use infinitely smooth kernels if you are not willing to find
“good” points!

Thank you for your attention!

Platte, Trefethen & Kuijlaars (2011). Impossibility of fast stable approximation of
analytic functions from equispaced samples. SIAM Review, 53(2):308–318.
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