
ProbNum: Probabilistic Numerics in Python

Maren Mahsereci
maren.mahsereci@uni-tuebingen.de

Heilbronn ProbNum workshop
London, March 28 2022

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 1 / 25

Let’s talk code http://probnum.org

How can users get familiar with PN methods via ProbNum?

Some examples of functionality. Top-level module overview.

Topics for this workshop.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 2 / 25

What is a PN method?

PN method:

Input:
Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Prior information.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

He provides a function handle @f (x) that evaluates the integrand at x when called.
Bob may have further information on the problem, e.g., that f (x) > 0 for all x ∈ Ω.

Bob wants to use a probabilistic numerical (PN) method.

+

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 3 / 25

What is a PN method?
PN method:

Input:
Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Prior information.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

He provides a function handle @f (x) that evaluates the integrand at x when called.
Bob may have further information on the problem, e.g., that f (x) > 0 for all x ∈ Ω.

Bob wants to use a probabilistic numerical (PN) method.

+

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 3 / 25

What is a PN method?

PN method:

Input:
Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Prior information.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

He provides a function handle @f (x) that evaluates the integrand at x when called.
Bob may have further information on the problem, e.g., that f (x) > 0 for all x ∈ Ω.

Bob wants to use a probabilistic numerical (PN) method.

+

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 3 / 25

What is a PN method?

PN method:

Input:
Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Prior information.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

He provides a function handle @f (x) that evaluates the integrand at x when called.
Bob may have further information on the problem, e.g., that f (x) > 0 for all x ∈ Ω.

Bob wants to use a probabilistic numerical (PN) method.

+

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 3 / 25

Bob’s code 1
From ProbNum’s quickstart tutorial:

from probnum.quad import bayesquad

d e f i n e i n t e g r a n d
fun = lambda x: np.sum(x ** 2, axis =1)

i n t e g r a t e f u n c t i o n on domain
F, info = bayesquad(fun=fun , input_dim=1, domain =(0, 1))

Output:

>> F: <Normal with shape=(), dtype=float64>

>> F.mean, F.var: 0.3313608243196674 9.98264330309695e-07

>> info: BQIterInfo(iteration=11, nevals=11, has converged=True)

Bob achieved his goal. Well documented code attracts users and applications. [show tutorial]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 4 / 25

Bob’s code 1
From ProbNum’s quickstart tutorial:

from probnum.quad import bayesquad

d e f i n e i n t e g r a n d
fun = lambda x: np.sum(x ** 2, axis =1)

i n t e g r a t e f u n c t i o n on domain
F, info = bayesquad(fun=fun , input_dim=1, domain =(0, 1))

Output:

>> F: <Normal with shape=(), dtype=float64>

>> F.mean, F.var: 0.3313608243196674 9.98264330309695e-07

>> info: BQIterInfo(iteration=11, nevals=11, has converged=True)

Bob achieved his goal. Well documented code attracts users and applications. [show tutorial]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 4 / 25

What is a PN method?

PN method:

Input:
Components of the PN method.

Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

Bob wants to customize components of the PN method.

He gets in contact with Alice via GitHub Issues.
Bob uses the code provided by Alice as guide.

?

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 5 / 25

What is a PN method?

PN method:

Input:
Components of the PN method.

Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

Bob wants to customize components of the PN method. He gets in contact with Alice via GitHub Issues.

Bob uses the code provided by Alice as guide.

?

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 5 / 25

What is a PN method?

PN method:

Input:
Components of the PN method.

Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

Bob wants to customize components of the PN method. He gets in contact with Alice via GitHub Issues.

Bob uses the code provided by Alice as guide.

?

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 5 / 25

What is a PN method?
PN method:

Input:
Components of the PN method.

Data source: Computational data or data
handle related to the quantity of interest.

Other problem specifications.

Return:
A random variable object that describes the
solution of a non-trivial numerical problem.

Bob wants to infer an integral F . It is given by F =
∫

Ω
f (x)p(x)dx .

Bob wants to customize components of the PN method.

He gets in contact with Alice via GitHub Issues.

Bob uses the code provided by Alice as guide.

?

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 5 / 25

Bob’s code 2 (customization)

from probnum.randprocs.kernels import Matern

from probnum.quad import *

d e f i n e c o m p o n e n t s
kernel = Matern(input_shape =(1,))

measure = LebesgueMeasure(domain =(0, 1), input_dim =1)

policy = RandomPolicy(measure.sample , batch_size =1, rng=np.random.default_rng ())

stop_crit = MaxNevals(max_nevals =5)

c r e a t e BQ o b j e c t
bq = BayesianQuadrature(kernel , measure , policy ,

BQStandardBeliefUpdate (), stop_crit)

i n t e g r a t e f u n c t i o n
F, _, info = bq.integrate(fun=fun , nodes=None , fun_evals=None)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 6 / 25

Bob’s code 2 (customization)

...

c r e a t e BQ o b j e c t
bq = BayesianQuadrature(kernel , measure , policy ,

BQStandardBeliefUpdate (), stop_crit)

i n t e g r a t e f u n c t i o n
F, _, info = bq.integrate(fun=fun , nodes=None , fun_evals=None)

Output:

>> F: <Normal with shape=(), dtype=float64>

>> F.mean, F.var:0.321592126965595 0.000290959605534713

>> info: BQIterInfo(iteration=5, nevals=5, has converged=True)

Bob achieved his goal. Code educates users. Well designed research code is intuitive and flexible.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 6 / 25

Bob’s code 2 (customization)

...

c r e a t e BQ o b j e c t
bq = BayesianQuadrature(kernel , measure , policy ,

BQStandardBeliefUpdate (), stop_crit)

i n t e g r a t e f u n c t i o n
F, _, info = bq.integrate(fun=fun , nodes=None , fun_evals=None)

Output:

>> F: <Normal with shape=(), dtype=float64>

>> F.mean, F.var:0.321592126965595 0.000290959605534713

>> info: BQIterInfo(iteration=5, nevals=5, has converged=True)

Bob achieved his goal. Code educates users. Well designed research code is intuitive and flexible.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 6 / 25

Code quality & contributions
By working with the tutorials, Bob is now a ProbNum user.
He has increased his understanding of PN methods.

During this process, he found a small bug in the code:
(Some output in BQIterInfo is inconsistent.)

He opens another GitHub Issue and describes the bug and the
expected functionality.

Alice confirms the bug and kindly asks Bob to submit a pull request
(PR) on GitHub with the corrected code.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 7 / 25

Code quality & contributions
By working with the tutorials, Bob is now a ProbNum user.
He has increased his understanding of PN methods.

During this process, he found a small bug in the code:
(Some output in BQIterInfo is inconsistent.)

He opens another GitHub Issue and describes the bug and the
expected functionality.

Alice confirms the bug and kindly asks Bob to submit a pull request
(PR) on GitHub with the corrected code.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 7 / 25

Code quality & contributions
By working with the tutorials, Bob is now a ProbNum user.
He has increased his understanding of PN methods.

During this process, he found a small bug in the code:
(Some output in BQIterInfo is inconsistent.)

He opens another GitHub Issue and describes the bug and the
expected functionality.

Alice confirms the bug and kindly asks Bob to submit a pull request
(PR) on GitHub with the corrected code.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 7 / 25

Code quality & contributions

Bob reads ProbNum’s development guide and creates a pull request
(PR) with the code fix.

Alice reviews the code, requests changes, and later approves the
code.
The changes are now part of ProbNum’s main branch.

Bob has improved the quality of ProbNum’s code base.
He also is now an official contributor of ProbNum and has augmented
his portfolio and CV.

Users augment functionality and increase robustness and quality of a code base. [show dev/PR]

GitHub enables contributions via Issues and pull requests (PRs) under controlled procedures.

GitHub Actions enable Continuous Integration (CI) via automated tests and code-format checks.
These ensure high code standards which in return increase user trust.

ProbNum uses tox to unify the local development with CI builds.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 8 / 25

Code quality & contributions

Bob reads ProbNum’s development guide and creates a pull request
(PR) with the code fix.

Alice reviews the code, requests changes, and later approves the
code.
The changes are now part of ProbNum’s main branch.

Bob has improved the quality of ProbNum’s code base.
He also is now an official contributor of ProbNum and has augmented
his portfolio and CV.

Users augment functionality and increase robustness and quality of a code base. [show dev/PR]

GitHub enables contributions via Issues and pull requests (PRs) under controlled procedures.

GitHub Actions enable Continuous Integration (CI) via automated tests and code-format checks.
These ensure high code standards which in return increase user trust.

ProbNum uses tox to unify the local development with CI builds.
Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 8 / 25

Summary of Bob’s interaction with ProbNum

Users have a variety of goals. ProbNum has APIs for different user experiences (e.g.,
from-problem-description vs. custom vs. dev).

Well maintained code attracts users and increases general understanding of PN methods.

Users contribute: They augment functionality and increase code robustness and quality.
This, in return, increases user trust.

GitHub facilitates all processes.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 9 / 25

What’s in for me?
Benefits of open source libraries in modern research

Open source software is an integral part of modern research.

BLAS, LAPACK, Python, NumPy, SciPy, ...

PyTorch, TensorFlow, JAX, Theano, Keras,

Stan, Pyro, TensorFlow Probability, ...

GPy, GPyTorch, GPflow, ...

GPyOpt, BOtorch, EmuKit, ... ProbNum

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 10 / 25

What’s in for me?
Benefits of open source libraries in modern research

Showcase & demonstrate.

Apply immediately.

Compare, benchmarks, reproduce, experiment.

Prototype, develop fast, build on existing components.

Make you research accessible, reusable.

Deliver quality code (unittests, reviews, CI), increase trust.

Discover new research questions.

Use for teaching & education.

Visibility and trust of field. Realize vision.

Share maintenance, use synergies.

For individuals: Invest, independent of position, use in grant
proposals. Students: learn skill, gain experience, augment CV.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 10 / 25

What’s in for me?
Benefits of open source libraries in modern research

Showcase & demonstrate.

Apply immediately.

Compare, benchmarks, reproduce, experiment.

Prototype, develop fast, build on existing components.

Make you research accessible, reusable.

Deliver quality code (unittests, reviews, CI), increase trust.

Discover new research questions.

Use for teaching & education.

Visibility and trust of field. Realize vision.

Share maintenance, use synergies.

For individuals: Invest, independent of position, use in grant
proposals. Students: learn skill, gain experience, augment CV.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 10 / 25

More than just solvers
Top-level modules of ProbNum

Supporting packages
pn.randvars

pn.randvars.Normal

. . .

pn.randprocs

pn.randprocs.kernels

pn.randprocs.GaussianProcess

. . .

pn.linops

pn.linops.Kronecker

. . .

pn.filtsmooth

pn.filtsmooth.filter kalman

. . . [sow API refs]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 11 / 25

More than just solvers
Top-level modules of ProbNum

PN solvers
pn.diffeq

pn.diffeq.probsolve ivp

pn.diffeq.perturbsolve ivp

. . .

pn.quad

pn.quad.bayesquad

pn.quad.bayesquad from data

. . .

pn.linalg

pn.linalg.problinsolve

pn.linalg.bayescg

. . .

Supporting packages
pn.randvars

pn.randvars.Normal

. . .

pn.randprocs

pn.randprocs.kernels

pn.randprocs.GaussianProcess

. . .

pn.linops

pn.linops.Kronecker

. . .

pn.filtsmooth

pn.filtsmooth.filter kalman

. . . [sow API refs]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 11 / 25

More than just solvers
Top-level modules of ProbNum

Supporting modules provide functionality
used by the PN solvers.

Modularity has benefits:

Re-purpose: Modules are general
enough to be of use elsewhere.

I Linear operators & randvars
I Random processes & kernels
I Filters and smoothers
I ...

Separation of concerns is intuitive.

Building on existing, well-tested
components is a good idea and
saves time.

Supporting packages
pn.randvars

pn.randvars.Normal

. . .

pn.randprocs

pn.randprocs.kernels

pn.randprocs.GaussianProcess

. . .

pn.linops

pn.linops.Kronecker

. . .

pn.filtsmooth

pn.filtsmooth.filter kalman

. . . [sow API refs]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 11 / 25

Examples

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 12 / 25

Example 1: Create & transform random variables

from probnum.randvars import Normal

d e f i n e random v a r i a b l e
x_rv = Normal(mean=0., cov =1.)

a f f i n e t r a n s f o r m a t i o n
y_rv = 2 * x_rv + 1

Output:

>> y rv: <Normal with shape=(), dtype=float64>

>> F.mean, F.var: 1.0 4.0

ProbNum provides
random variable arithmetics.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 13 / 25

Example 1: Create & transform random variables

from probnum.randvars import Normal

d e f i n e random v a r i a b l e
x_rv = Normal(mean=0., cov =1.)

a f f i n e t r a n s f o r m a t i o n
y_rv = 2 * x_rv + 1

Output:

>> y rv: <Normal with shape=(), dtype=float64>

>> F.mean, F.var: 1.0 4.0

ProbNum provides
random variable arithmetics.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 13 / 25

Example 2: Create & transform random variables (multi-dim)

from probnum.linops import Matrix

#d e f i n e random v a r i a b l e
x_rv = Normal(mean=np.array ([1., 2., 3.]),

cov=np.diag(np.array ([4., 5., 6.])))

d e f i n e l i n e a r o p e r a t o r s f rom m a t r i x
P = np.array ([[1, 0, 0], [0, 1, 0]])

Pop = Matrix(P)

t r a n s f o r m
y_rv = Pop @ x_rv

Output:

>> y rv: <Normal with shape=(2,), dtype=float64>

>> y rv.mean, y rv.var: [1., 2.] [4.0, 5.0]

RVs can be transformed by
applying scalars, np.ndarrays or
instances of LinearOperator

using overloaded arithmetic
operators (*, +, @, ..).

This enables easy to read, but
efficient RV manipulation.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 14 / 25

Example 2: Create & transform random variables (multi-dim)

from probnum.linops import Matrix

#d e f i n e random v a r i a b l e
x_rv = Normal(mean=np.array ([1., 2., 3.]),

cov=np.diag(np.array ([4., 5., 6.])))

d e f i n e l i n e a r o p e r a t o r s f rom m a t r i x
P = np.array ([[1, 0, 0], [0, 1, 0]])

Pop = Matrix(P)

t r a n s f o r m
y_rv = Pop @ x_rv

Output:

>> y rv: <Normal with shape=(2,), dtype=float64>

>> y rv.mean, y rv.var: [1., 2.] [4.0, 5.0]

RVs can be transformed by
applying scalars, np.ndarrays or
instances of LinearOperator

using overloaded arithmetic
operators (*, +, @, ..).

This enables easy to read, but
efficient RV manipulation.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 14 / 25

Example 3: Matrix-free linear operators

d e f i n e m a t r i x −v e c t o r p r o d u c t
@LinearOperator.broadcast_matvec

def mv(v):

return np.roll(v, 1) # s h i f t s by one

c r e a t e l i n e a r o p e r a t o r f rom mv
Aop = LinearOperator(shape=(5, 5),

dtype=np.float_ , matmul=mv)

a p p l y t o v e c t o r (o r RV)
x = np.arange (0., 5, 1)

y = Aop @ x

Output:

>> x: [0., 1., 2., 3., 4.]

>> y: [4., 0., 1., 2., 3.]

Often it is sufficient to encode
the matrix-vector product of an
operator.

This enables compute- and
memory-efficient custom linear
operators.

The dense matrix can still be
constructed if required.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 15 / 25

Example 3: Matrix-free linear operators

d e f i n e m a t r i x −v e c t o r p r o d u c t
@LinearOperator.broadcast_matvec

def mv(v):

return np.roll(v, 1) # s h i f t s by one

c r e a t e l i n e a r o p e r a t o r f rom mv
Aop = LinearOperator(shape=(5, 5),

dtype=np.float_ , matmul=mv)

a p p l y t o v e c t o r (o r RV)
x = np.arange (0., 5, 1)

y = Aop @ x

Output:

>> x: [0., 1., 2., 3., 4.]

>> y: [4., 0., 1., 2., 3.]

Often it is sufficient to encode
the matrix-vector product of an
operator.

This enables compute- and
memory-efficient custom linear
operators.

The dense matrix can still be
constructed if required.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 15 / 25

Example 4: Sparse linear operators

import scipy.sparse

c r e a t e a s p a r s e m a t r i x u s i n g S c i P y
A_scipy = scipy.sparse.rand(m=5, n=5,

density =0.05, random_state =42)

c r e a t e a ProbNum l i n e a r o p e r a t o r
Aop = Matrix(A=A_scipy)

a p p l y t o v e c t o r (o r RV)
x = np.ones (5)

y = Aop @ x

Output:

>> x: [1., 1., 1., 1., 1.]

>> y: [0., 0., 0., 0.30424224, 0.]

Create linear operators from
SciPy’s sparse matrices.

Use their efficient implementa-
tion.
It carries over to ProbNum.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 16 / 25

Example 4: Sparse linear operators

import scipy.sparse

c r e a t e a s p a r s e m a t r i x u s i n g S c i P y
A_scipy = scipy.sparse.rand(m=5, n=5,

density =0.05, random_state =42)

c r e a t e a ProbNum l i n e a r o p e r a t o r
Aop = Matrix(A=A_scipy)

a p p l y t o v e c t o r (o r RV)
x = np.ones (5)

y = Aop @ x

Output:

>> x: [1., 1., 1., 1., 1.]

>> y: [0., 0., 0., 0.30424224, 0.]

Create linear operators from
SciPy’s sparse matrices.

Use their efficient implementa-
tion.
It carries over to ProbNum.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 16 / 25

Example 5: Kronecker product & Matrix-Normal

D e f i n e t h e mean m a t r i x
n = 20 # m a t r i x −v a r i a t e RV i s nxn
mean = np.eye(n)

D e f i n e t h e K r o n e c k e r c o v a r i a n c e m a t r i x
V = 1 / k * scipy.sparse.diags (..,

shape =(n, n)). toarray ()

W = np.eye(n)

cov = Kronecker(A=V, B=W)

c r e a t e m a t r i x −v a r i a t e n o r m a l RV
X_rv = Normal(mean=mean , cov=cov)

Output:

>> X rv: <Normal with shape=(100, 100)..>

>> X rv.cov: <Kronecker with shape=(100, 100)..>

Kronecker is a ProbNum
LinearOperator.
It can be used as covariance
matrix in Normal.

Samples obey the
Kronecker covariance:

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 17 / 25

Example 5: Kronecker product & Matrix-Normal

D e f i n e t h e mean m a t r i x
n = 20 # m a t r i x −v a r i a t e RV i s nxn
mean = np.eye(n)

D e f i n e t h e K r o n e c k e r c o v a r i a n c e m a t r i x
V = 1 / k * scipy.sparse.diags (..,

shape =(n, n)). toarray ()

W = np.eye(n)

cov = Kronecker(A=V, B=W)

c r e a t e m a t r i x −v a r i a t e n o r m a l RV
X_rv = Normal(mean=mean , cov=cov)

Output:

>> X rv: <Normal with shape=(100, 100)..>

>> X rv.cov: <Kronecker with shape=(100, 100)..>

Kronecker is a ProbNum
LinearOperator.
It can be used as covariance
matrix in Normal.

Samples obey the
Kronecker covariance:

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 17 / 25

More examples: Filtering & smoothing, kernel arithmetics, ...

Linear operators can be combined (A @ B + C).
(Nico, Nathanael, Jonathan S.)

Auto-diff backend (soon)

(Marvin, Jonathan W.)

import numpy as np

from probnum.randprocs.kernels \

import ExpQuad , WhiteNoise

Ke rn e l v i a a r i t hm e t i c
k = ExpQuad(input_shape =()) + \

0.01 * WhiteNoise(input_shape =())

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 18 / 25

More examples: Filtering & smoothing, kernel arithmetics, ...

Linear operators can be combined (A @ B + C).
(Nico, Nathanael, Jonathan S.)

Auto-diff backend (soon)

(Marvin, Jonathan W.)

import numpy as np

from probnum.randprocs.kernels \

import ExpQuad , WhiteNoise

Ke rn e l v i a a r i t hm e t i c
k = ExpQuad(input_shape =()) + \

0.01 * WhiteNoise(input_shape =())

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 18 / 25

Towards propagating uncertainty

ProbNum aims to not only develop solver modules, but a high-level structure.

The PN-solvers’ in- and output objects (ranvars, randprocs, ...)

A loose core module with abstract components to allow composability
(policy, stopping criterion, ...).

ProbNum is a greenfield project (there is no similar library yet).

Great opportunity to learn about the practical aspects of realizing parts of the
PN vision.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 19 / 25

Developing custom component (example)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 20 / 25

Developing custom component (example)

Abs t r a c t c l a s s f o r s t o p p i n g c r i t e r i o n .
class StoppingCriterion(abc.ABC):

@abc.abstractmethod

def __call__(self , *args , ** kwargs) -> bool:

raise NotImplementedError

def __and__(self , other):

return LambdaStoppingCriterion(

stopcrit=lambda *args , ** kwargs:

self(*args , ** kwargs) and other (*args , ** kwargs))

def __or__(self , other):

return LambdaStoppingCriterion(

stopcrit=lambda *args , ** kwargs:

self(*args , ** kwargs) or other (*args , ** kwargs))

def __invert__(self): ...

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 20 / 25

Developing custom component (example)

Stopp ing c r i t e r i o n s p e c i f i c to a l i n e a r s o l v e r
class ResidualNormStoppingCriterion(StoppingCriterion):

def __init__(self , atol = 10**-5, rtol = 10** -5 ,):

self.atol = pn.utils.as_numpy_scalar(atol)

self.rtol = pn.utils.as_numpy_scalar(rtol)

def __call__(self , solver_state) -> bool:

res_norm = np.linalg.norm(solver_state.residual ,

ord=2)

b_norm = np.linalg.norm(solver_state.problem.b,

ord=2)

return res_norm <= self.atol or \

res_norm <= self.rtol * b_norm

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 20 / 25

A detour on common industry hurdles
Applying PN methods in real applications

Eve would like to apply PN methods.

Initial hurdles:

Install & get familiar with calling a solver (< 15 mins).

Understand what the input and output objects represent.
(< 30 mins).

Later: Set up workflow (< 30 mins).

She needs to be sure that:

The code does not fail most of the time.

The results are good without “tweaking” most of the time.

There are theoretical guarantee.

Industry users often do not have a lot of time to explore beyond their project.
If the RoI is not guaranteed, the initial hurdles must be low.
Performance (reliably good solver results) and code robustness are key. Averages matter. [dev guide]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 21 / 25

A detour on common industry hurdles
Applying PN methods in real applications

Eve would like to apply PN methods.

Initial hurdles:

Install & get familiar with calling a solver (< 15 mins).

Understand what the input and output objects represent.
(< 30 mins).

Later: Set up workflow (< 30 mins).

She needs to be sure that:

The code does not fail most of the time.

The results are good without “tweaking” most of the time.

There are theoretical guarantee.

Industry users often do not have a lot of time to explore beyond their project.
If the RoI is not guaranteed, the initial hurdles must be low.
Performance (reliably good solver results) and code robustness are key. Averages matter. [dev guide]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 21 / 25

A detour on common industry hurdles
Applying PN methods in real applications

Eve would like to apply PN methods.

Initial hurdles:

Install & get familiar with calling a solver (< 15 mins).

Understand what the input and output objects represent.
(< 30 mins).

Later: Set up workflow (< 30 mins).

She needs to be sure that:

The code does not fail most of the time.

The results are good without “tweaking” most of the time.

There are theoretical guarantee.

Industry users often do not have a lot of time to explore beyond their project.
If the RoI is not guaranteed, the initial hurdles must be low.
Performance (reliably good solver results) and code robustness are key. Averages matter. [dev guide]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 21 / 25

A detour on common industry hurdles
Applying PN methods in real applications

Eve would like to apply PN methods.

Initial hurdles:

Install & get familiar with calling a solver (< 15 mins).

Understand what the input and output objects represent.
(< 30 mins).

Later: Set up workflow (< 30 mins).

She needs to be sure that:

The code does not fail most of the time.

The results are good without “tweaking” most of the time.

There are theoretical guarantee.

Industry users often do not have a lot of time to explore beyond their project.
If the RoI is not guaranteed, the initial hurdles must be low.
Performance (reliably good solver results) and code robustness are key. Averages matter. [dev guide]

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 21 / 25

ProbNum Zoo: Test problems for PN methods

pn.problems.zoo collects test problems for PN solvers.

Unified API (ready to use with solvers).

Demonstrate on toy problems.

Showcase robustness of method by running it on many problems.

Easy paper writing.

Might enable benchmarking later.

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 22 / 25

Aims for this workshop https://github.com/probabilistic-numerics/probnum

State

The package is growing.

Aims

Increase familiarity with ProbNum in PN community.
I Interact with the tutorials. Add missing tutorial.
I Add test functions to pn.problems.zoo (example: F-X for quad).

I Use ProbNum as dependency in your project (e.g., LinearOperator, ... functionality)

Involvement increasingly “federal”.

Increase support of individual modules (+planning exercise).
I pn.diffeq Nico, Nathanael, Jonathan S. (Marvin)
I pn.linalg Jonathan W., Marvin, Tim R., (Jon?)
I pn.quad Toni, Maren, (Alex?, F-X?, Masha?)

Anyone interested is welcome. This does not need to be a big commitment.

G
SoC!

(N
ic

o)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 23 / 25

Aims for this workshop https://github.com/probabilistic-numerics/probnum

State

The package is growing.

Aims

Increase familiarity with ProbNum in PN community.
I Interact with the tutorials. Add missing tutorial.
I Add test functions to pn.problems.zoo (example: F-X for quad).

I Use ProbNum as dependency in your project (e.g., LinearOperator, ... functionality)

Involvement increasingly “federal”.

Increase support of individual modules (+planning exercise).
I pn.diffeq Nico, Nathanael, Jonathan S. (Marvin)
I pn.linalg Jonathan W., Marvin, Tim R., (Jon?)
I pn.quad Toni, Maren, (Alex?, F-X?, Masha?)

Anyone interested is welcome. This does not need to be a big commitment.

G
SoC!

(N
ic

o)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 23 / 25

Aims for this workshop https://github.com/probabilistic-numerics/probnum

State

The package is growing.

Aims

Increase familiarity with ProbNum in PN community.
I Interact with the tutorials. Add missing tutorial.
I Add test functions to pn.problems.zoo (example: F-X for quad).

I Use ProbNum as dependency in your project (e.g., LinearOperator, ... functionality)

Involvement increasingly “federal”.

Increase support of individual modules (+planning exercise).
I pn.diffeq Nico, Nathanael, Jonathan S. (Marvin)
I pn.linalg Jonathan W., Marvin, Tim R., (Jon?)
I pn.quad Toni, Maren, (Alex?, F-X?, Masha?)

Anyone interested is welcome. This does not need to be a big commitment.

G
SoC!

(N
ic

o)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 23 / 25

Aims for this workshop https://github.com/probabilistic-numerics/probnum

State

The package is growing.

Aims

Increase familiarity with ProbNum in PN community.
I Interact with the tutorials. Add missing tutorial.
I Add test functions to pn.problems.zoo (example: F-X for quad).

I Use ProbNum as dependency in your project (e.g., LinearOperator, ... functionality)

Involvement increasingly “federal”.

Increase support of individual modules (+planning exercise).
I pn.diffeq Nico, Nathanael, Jonathan S. (Marvin)
I pn.linalg Jonathan W., Marvin, Tim R., (Jon?)
I pn.quad Toni, Maren, (Alex?, F-X?, Masha?)

Anyone interested is welcome. This does not need to be a big commitment.

G
SoC!

(N
ic

o)

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 23 / 25

Thank you!

maren.mahsereci@uni-tuebingen.de

http://probnum.org

Maren Mahsereci maren.mahsereci@uni-tuebingen.de ProbNum: Probabilistic Numerics in Python October 25 2021 24 / 25

