GParareal: a time-parallel ODE solver using Gaussian process emulation

K. Pentland¹, M. Tamborrino², T. J. Sullivan^{1,3}, J. Buchanan⁴, and L. C. Appel⁴

¹Mathematics Institute, University of Warwick ²Department of Statistics, University of Warwick ³Alan Turing Institute, London⁴Culham Centre for Fusion Energy, UKAEA

(I) Motivation and aims

What are we doing?

• We seek numerical solutions $U_j \approx u(t_j)$ to a system of $d \in \mathbb{N}$ (nonlinear) ordinary differential equations (ODEs):

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{f} \big(\boldsymbol{u}(t), t \big) \qquad \boldsymbol{u}(t_0) = \boldsymbol{u}^0 \qquad t \in [t_0, t_J]$$

(I) Motivation and aims

What are we doing?

• We seek numerical solutions $U_i \approx u(t_i)$ to a system of $d \in \mathbb{N}$ (nonlinear) ordinary differential equations (ODEs):

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{f}(\boldsymbol{u}(t), t) \qquad \boldsymbol{u}(t_0) = \boldsymbol{u}^0 \qquad t \in [t_0, t_J]$$

- We want to integrate problems where any one (or more) of the following hold:
 - (i) the interval of integration, $[t_0, t_J]$
 - (ii) the number of mesh points, J + 1
 - (iii) the wallclock time to evaluate the vector field, f

is so large, that locating a solution takes hours, days, or even weeks using sequential methods (i.e. Runge-Kutta).

(I) Motivation and aims

What are we doing?

• We seek numerical solutions $U_i \approx u(t_i)$ to a system of $d \in \mathbb{N}$ (nonlinear) ordinary differential equations (ODEs):

$$\frac{d\boldsymbol{u}}{dt} = \boldsymbol{f}(\boldsymbol{u}(t), t) \qquad \boldsymbol{u}(t_0) = \boldsymbol{u}^0 \qquad t \in [t_0, t_J]$$

- We want to integrate problems where any one (or more) of the following hold:
 - (i) the interval of integration, $[t_0, t_J]$
 - (ii) the number of mesh points, J + 1

(iii) the wallclock time to evaluate the vector field, f

is so large, that locating a solution takes hours, days, or even weeks using sequential methods (i.e. Runge-Kutta).

• For example: IVPs for simulating magnetically confined fusion plasmas over one second can take 100 days to run...

Take home message

Our goal is to develop new time-parallel algorithms using probabilistic methods to solve IVPs faster.

What will we cover today?

- What is a **time-parallel method**? \rightarrow **parareal** (an existing method).
- Introduce **GParareal** (our method) that combines **parareal** and **Gaussian process emulation**.
- Illustrate that GParareal performs favourably compared to parareal \rightarrow additional parallel speedup.
- Highlight some **open problems** surrounding GParareal.

• Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it F, on a single processor.

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it F, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!
 - \rightarrow With **J** processors we could partition into **J** sub-problems and solve in parallel directly.

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J] \qquad \longrightarrow \qquad \frac{du_j}{dt} = f(u_j(t), t) \quad u_j(t_j) = U_j \qquad t \in [t_j, t_{j+1}]$$

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it F, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!
 - \rightarrow With *J* processors we could partition into *J* sub-problems and solve in parallel directly.

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J] \qquad \longrightarrow \qquad \frac{du_j}{dt} = f(u_j(t), t) \quad u_j(t_j) = U_j \qquad t \in [t_j, t_{j+1}]$$

- However, only **one initial condition** is known!
- How do we find the others?

- Consider: scalar ODE \rightarrow usually we integrate sequentially with some RK method, call it **F**, on a single processor.
 - \rightarrow Time is inherently sequential \rightarrow solution at future steps depend on the past!
 - \rightarrow With **J** processors we could partition into **J** sub-problems and solve in parallel directly.

$$\frac{du}{dt} = f(u(t), t) \quad u(t_0) = u^0 \qquad t \in [t_0, t_J] \qquad \longrightarrow \qquad \frac{du_j}{dt} = f(u_j(t), t) \quad u_j(t_j) = U_j \qquad t \in [t_j, t_{j+1}]$$

- However, only **one initial condition** is known!
- How do we find the others?
- Many time-parallel methods:
 - \rightarrow Direct.
 - \rightarrow Waveform-relaxation.
 - \rightarrow Multigrid/multiple shooting (our focus).

Aim: locate the *J* <u>initial values</u> (from before) **iteratively.**

How? using two sequential integrators:

- → Fine solver **F** (high accuracy/slow execution)
- → Coarse solver **G** (low accuracy/fast execution)

Aim: locate the *J* <u>initial values</u> (from before) **iteratively.**

1) Run **G serially** (yellow).

How? using two sequential integrators:

- → Fine solver **F** (high accuracy/slow execution)
- → Coarse solver **G** (low accuracy/fast execution)

Aim: locate the $J \underline{initial values}$ (from before) **iteratively.**

1) Run **G serially** (yellow).

2) Using these conditions, run **F** in parallel (blue).

How? using two sequential integrators:

- \rightarrow $\ \ \, Fine \ \ solver \ \ \ F$ (high accuracy/slow execution)
- \rightarrow Coarse solver **G** (low accuracy/fast execution)

Aim: locate the *J* <u>initial values</u> (from before) **iteratively.**

- 1) Run **G serially** (yellow).
- 2) Using these conditions, run **F** in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

- 1) Run **G** serially (yellow).
- 2) Using these conditions, run **F** in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

- 1) Run **G** serially (yellow).
- 2) Using these conditions, run **F** in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

- 1) Run **G** serially (yellow).
- 2) Using these conditions, run **F** in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

Aim: locate the $J \underline{initial values}$ (from before) **iteratively.**

- 1) Run **G serially** (yellow).
- 2) Using these conditions, run **F** in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4) Solution given by red dots. Repeat steps2 and 3 until desired tolerance reached:

$$\|U_j^k - U_j^{k-1}\|_{\infty} < \varepsilon \quad \forall j \le J$$

Aim: locate the $J \underline{initial values}$ (from before) iteratively.

- 1) Run **G serially** (yellow).
- 2) Using these conditions, run ${\bf F}$ in parallel (blue).
- 3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

Take home: parareal converges in k < J iterations \rightarrow approx. speedup = J/k

4) Solution given by red dots. Repeat steps2 and 3 until desired tolerance reached:

$$\|U_j^k - U_j^{k-1}\|_\infty < \varepsilon \quad \forall j \leq J$$

The predictor-corrector limitation

• Corrections based on single previous iteration \rightarrow all other solution information is ignored.

The predictor-corrector limitation

• Corrections based on single previous iteration \rightarrow all other solution information is ignored.

Our research: improve corrections using probabilistic methods to reduce number of iterations *k*.

The predictor-corrector limitation

• Corrections based on single previous iteration \rightarrow all other solution information is ignored.

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

How do we do this?

• We re-formulate the PC such that:

The predictor-corrector limitation

• Corrections based on single previous iteration \rightarrow all other solution information is ignored.

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

How do we do this?

The predictor-corrector limitation

• Corrections based on single previous iteration \rightarrow all other solution information is ignored.

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

How do we do this? • We re-formulate the PC such that: $U_{j}^{k} = \overbrace{\mathcal{F}(\bigcup_{j=1}^{k})}^{\text{Unknown}} = (\mathcal{F} + \mathcal{G} - \mathcal{G})(U_{j=1}^{k}) = \underbrace{\mathcal{G}(U_{j=1}^{k})}_{\text{Prediction}} + \underbrace{(\mathcal{F} - \mathcal{G})(U_{j=1}^{k})}_{\text{Correction}} \xrightarrow{\text{(which returns a Gaussian RV)}} \xrightarrow{(\text{which returns a Gaussian RV})}$ $\underbrace{\mathbf{New update rule}}_{U_{j}^{k}} = \mathcal{G}(U_{j=1}^{k}) + \mathbb{E}[(\mathcal{F} - \mathcal{G})(U_{j=1}^{k})] \xrightarrow{(\text{We approximate the RV by taking its expected value.}}_{\text{This ignores uncertainty in the GP} \rightarrow \text{ open problem}}$

	-	
U_j^k	$= \mathcal{G}(U_{j-1}^k) + \mathbb{E}\big[(\mathcal{F} - \mathcal{G})(U_{j-1}^k)\big]$	$_{-1})]$

	New update rule	
U_j^k	$= \mathcal{G}(U_{j-1}^k) + \mathbb{E}\left[(\mathcal{F} - \mathcal{G})(U_{j-1}^k)\right]$	1)]

	${f FitzHugh-Nagur}$	no model
$\frac{du_1}{dt}$	$= c(u_1 - \frac{u_1^3}{3} + u_2)$	$t \in [0, 40]$
$\frac{du_2}{dt}$	$= -\frac{1}{c}(u_1 - a + bu_2)$	$\boldsymbol{u}(0) = (-1,1)^{T}$

Now we use **legacy data** to pre-train the emulator and solve faster!

	${f FitzHugh-Nagur}$	no model
$\frac{du_1}{dt}$	$= c(u_1 - \frac{u_1^3}{3} + u_2)$	$t \in [0, 40]$
$\frac{du_2}{dt}$	$= -\frac{1}{c}(u_1 - a + bu_2)$	$\boldsymbol{u}(0) = (-1,1)^{\intercal}$

Step 1: Run GParareal with the original initial condition.

 $\boldsymbol{u}(0) = (-1,1)^{\intercal}$

Step 2: Store the **F** and **G** solution data (= legacy data).

Step 3: Pre-train emulator using legacy data and then solve for **new initial value**.

 $\boldsymbol{u}(0) = (0.75, 0.25)^{\mathsf{T}}$

FitzHugh-Nagumo model $\frac{du_1}{dt} = c(u_1 - \frac{u_1^3}{3} + u_2)$ $t \in [0, 40]$ $\frac{du_2}{dt} = -\frac{1}{c}(u_1 - a + bu_2)$ $\boldsymbol{u}(0) = (-1, 1)^\intercal$

Now we use **legacy data** to pre-train the emulator and solve faster!

Step 1: Run GParareal with the original initial condition.

 $\boldsymbol{u}(0) = (-1,1)^{\mathsf{T}}$

Step 2: Store the **F** and **G** solution data (= legacy data).

Step 3: Pre-train emulator using legacy data and then solve for **new initial value**.

 $u(0) = (0.75, 0.25)^{\mathsf{T}}$

Advantages

- can converge in fewer iterations than parareal \rightarrow faster wallclock time.
- solutions maintain accuracy wrt parareal, even for chaotic systems.
- GP can be pre-trained using legacy solution data \rightarrow improves speedup further.
- can solve problems that parareal cannot (i.e. where it does not converge).

(V) Conclusions and future work

Advantages

- can converge in fewer iterations than parareal \rightarrow faster wallclock time.
- solutions maintain accuracy wrt parareal, even for chaotic systems.
- GP can be pre-trained using legacy solution data \rightarrow improves speedup further.
- can solve problems that parareal cannot (i.e. where it does not converge).

$\mathbf{Drawbacks} / \mathbf{open \ problems}$

- Are standard **out-the-box GP emulators** enough?
 - \rightarrow can we use **better ML/PN methods** to learn the (**high-dimensional**) correction?
- Approximating the correction by the expected value of the GP ignores all uncertainty.
 - \rightarrow currently we obtain point estimate solutions.
 - \rightarrow can we quantify uncertainty to develop a truly **PN method**?
- Is it worth developing developing a time-parallel PN method?

Thank you for listening! Questions?

FitzHugh-Nagumo model $\frac{du_1}{dt} = c(u_1 - \frac{u_1^3}{3} + u_2) \qquad t \in [0, 40]$ $\frac{du_2}{dt} = -\frac{1}{c}(u_1 - a + bu_2) \qquad \boldsymbol{u}(0) = (-1, 1)^{\mathsf{T}}$

> Again we use **legacy data**, but solve over various initial values

Iterations until convergence k for various initial values

 $\boldsymbol{u}(0) \in [-1.25, 1.25]^2$

Processors