
GParareal: a time-parallel ODE solver using Gaussian
process emulation

K. Pentland1, M. Tamborrino2, T. J. Sullivan1,3, J. Buchanan4, and L. C. Appel4

1Mathematics Institute, University of Warwick
2Department of Statistics, University of Warwick

3Alan Turing Institute, London
4Culham Centre for Fusion Energy, UKAEA

(I) Motivation and aims

What are we doing?
● We seek numerical solutions to a system of (nonlinear) ordinary differential equations (ODEs):

1/8

(I) Motivation and aims

What are we doing?
● We seek numerical solutions to a system of (nonlinear) ordinary differential equations (ODEs):

● We want to integrate problems where any one (or more) of the following hold:

(i) the interval of integration,

(ii) the number of mesh points,

(iii)the wallclock time to evaluate the vector field,

is so large, that locating a solution takes hours, days, or even weeks using sequential methods (i.e. Runge-Kutta).

1/8

(I) Motivation and aims

What are we doing?
● We seek numerical solutions to a system of (nonlinear) ordinary differential equations (ODEs):

● We want to integrate problems where any one (or more) of the following hold:

(i) the interval of integration,

(ii) the number of mesh points,

(iii)the wallclock time to evaluate the vector field,

is so large, that locating a solution takes hours, days, or even weeks using sequential methods (i.e. Runge-Kutta).

● For example: IVPs for simulating magnetically confined fusion plasmas over one second can take 100 days to run...

1/8

Take home message

Our goal is to develop new time-parallel algorithms using probabilistic methods to solve IVPs faster.

What will we cover today?
 What is a time-parallel method? → parareal (an existing method).
 Introduce GParareal (our method) that combines parareal and Gaussian process emulation.
 Illustrate that GParareal performs favourably compared to parareal → additional parallel speedup.
 Highlight some open problems surrounding GParareal.

(I) Motivation and aims

2/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!

All carried out on one processor!

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!
 With J processors we could partition into J sub-problems and solve in parallel directly.

Multiple processors

P1 P2 P3 P4 P5 P6

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!
 With J processors we could partition into J sub-problems and solve in parallel directly.

● However, only one initial condition is known!
● How do we find the others?

?

?
?

?

?

P1 P2 P3 P4 P5 P6

Multiple processors

3/8

(II) Time-parallel methods

● Consider: scalar ODE → usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential → solution at future steps depend on the past!
 With J processors we could partition into J sub-problems and solve in parallel directly.

● However, only one initial condition is known!
● How do we find the others?

● Many time-parallel methods:
 Direct.
 Waveform-relaxation.
 Multigrid/multiple shooting (our focus).

?

?
?

?

?

P1 P2 P3 P4 P5 P6

Multiple processors

3/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

4/8

How? using two sequential integrators:
 Fine solver F (high accuracy/slow execution)
 Coarse solver G (low accuracy/fast execution)

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

4/8

How? using two sequential integrators:
 Fine solver F (high accuracy/slow execution)
 Coarse solver G (low accuracy/fast execution)

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

4/8

How? using two sequential integrators:
 Fine solver F (high accuracy/slow execution)
 Coarse solver G (low accuracy/fast execution)

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4) Solution given by red dots. Repeat steps

2 and 3 until desired tolerance reached:

4/8

(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

4) Solution given by red dots. Repeat steps

2 and 3 until desired tolerance reached:

Take home: parareal converges in k < J iterations
→ approx. speedup = J/k

4/8

(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration → all other solution information is ignored.

5/8

(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration → all other solution information is ignored.

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

5/8

(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration → all other solution information is ignored.

How do we do this?
 We re-formulate the PC such that:

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

5/8

(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration → all other solution information is ignored.

How do we do this?
 We re-formulate the PC such that:

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

5/8

Model using a GP emulator trained on all
previous evaluations of F and G!

(which returns a Gaussian RV)

(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration → all other solution information is ignored.

How do we do this?
 We re-formulate the PC such that:

Our research: improve corrections using probabilistic methods to reduce number of iterations k.

5/8

Model using a GP emulator trained on all
previous evaluations of F and G!

(which returns a Gaussian RV)

We approximate the RV by taking its expected value.

New update rule

This ignores uncertainty in the GP → open problem

(IV) GParareal

How it works: very similar to parareal.

(IV) GParareal

How it works: very similar to parareal.

(IV) GParareal

How it works: very similar to parareal.

(IV) GParareal

How it works: very similar to parareal.

(IV) GParareal

How it works: very similar to parareal.

New update rule

(IV) GParareal

How it works: very similar to parareal.

New update rule

(IV) GParareal

How it works: very similar to parareal.

New update rule

(IV) GParareal

FitzHugh-Nagumo model
Iterations until convergence k

for various initial values

6/8

(IV) GParareal

Parareal

FitzHugh-Nagumo model
Iterations until convergence k

for various initial values

6/8

(IV) GParareal

Parareal

FitzHugh-Nagumo model

GParareal

Iterations until convergence k
for various initial values

6/8

(IV) GParareal

FitzHugh-Nagumo model

Now we use legacy data to pre-train the emulator
and solve faster!

7/8

(IV) GParareal

FitzHugh-Nagumo model

Now we use legacy data to pre-train the emulator
and solve faster!

Step 1: Run GParareal with the original initial condition.

Step 2: Store the F and G solution data (= legacy data).

Step 3: Pre-train emulator using legacy data
and then solve for new initial value.

7/8

(IV) GParareal

FitzHugh-Nagumo model

Iterations until convergence k (with legacy data)

Now we use legacy data to pre-train the emulator
and solve faster!

Step 1: Run GParareal with the original initial condition.

Step 2: Store the F and G solution data (= legacy data).

Step 3: Pre-train emulator using legacy data
and then solve for new initial value.

7/8

(V) Conclusions and future work

Advantages
● can converge in fewer iterations than parareal → faster wallclock time.
● solutions maintain accuracy wrt parareal, even for chaotic systems.
● GP can be pre-trained using legacy solution data → improves speedup further.
● can solve problems that parareal cannot (i.e. where it does not converge).

8/8

(V) Conclusions and future work

Advantages
● can converge in fewer iterations than parareal → faster wallclock time.
● solutions maintain accuracy wrt parareal, even for chaotic systems.
● GP can be pre-trained using legacy solution data → improves speedup further.
● can solve problems that parareal cannot (i.e. where it does not converge).

Drawbacks/open problems
● Are standard out-the-box GP emulators enough?

→ can we use better ML/PN methods to learn the (high-dimensional) correction?
● Approximating the correction by the expected value of the GP ignores all uncertainty.

→ currently we obtain point estimate solutions.

→ can we quantify uncertainty to develop a truly PN method?
● Is it worth developing developing a time-parallel PN method?

8/8

Thank you for listening! Questions?

(IV) GParareal: additional results

Iterations until convergence k Speedup

FitzHugh-Nagumo model

Accuracy vs. time

(IV) GParareal: additional results

GParareal + legacy data

FitzHugh-Nagumo model
Iterations until convergence k

for various initial values

Again we use legacy data, but solve over
various initial values

(IV) GParareal: additional results

FitzHugh-Nagumo model

Now we use legacy data to solve for a new
initial condition faster!

Accuracy vs. time (with legacy data) Step 1: Run GParareal with on the original initial condition.

Step 2: Store the F and G solution data (= legacy data).

Step 3: Pre-train emulator using legacy data
and then solve for new initial value.

(IV) GParareal: additional results

Rossler system

Solutions in phase space Accuracy vs. time

(IV) GParareal: additional results

Rossler system

Speedup (with legacy data)Iterations until convergence k (with legacy data)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

