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(I) Motivation and aims

What are we doing?
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● We seek numerical solutions                  to a system of           (nonlinear) ordinary differential equations (ODEs):

● We want to integrate problems where any one (or more) of the following hold:

(i) the interval of integration,

(ii) the number of mesh points,

(iii)the wallclock time to evaluate the vector field,

is so large, that locating a solution takes hours, days, or even weeks using sequential methods (i.e. Runge-Kutta).

● For example: IVPs for simulating magnetically confined fusion plasmas over one second can take 100 days to run...
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Take home message

Our goal is to develop new time-parallel algorithms using probabilistic methods to solve IVPs faster. 

What will we cover today?
 What is a time-parallel method?  →  parareal (an existing method). 
 Introduce GParareal (our method) that combines parareal and Gaussian process emulation. 
 Illustrate that GParareal performs favourably compared to parareal  →  additional parallel speedup.
 Highlight some open problems surrounding GParareal.
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(II) Time-parallel methods

● Consider: scalar ODE  →  usually we integrate sequentially with some RK method, call it F, on a single processor.
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● Consider: scalar ODE  →  usually we integrate sequentially with some RK method, call it F, on a single processor.
 Time is inherently sequential  →  solution at future steps depend on the past!
 With J processors we could partition into J sub-problems and solve in parallel directly.

● However, only one initial condition is known!
● How do we find the others?

● Many time-parallel methods:
 Direct.
 Waveform-relaxation.
 Multigrid/multiple shooting (our focus). 

?

?
?

?

?

P1 P2 P3 P4 P5 P6

Multiple processors
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(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.
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(III) The Parareal algorithm

Aim: locate the J initial values (from before) iteratively.

1) Run G serially (yellow).

2) Using these conditions, run F in parallel (blue).

3) Predictor-corrector (PC) step: predict with G (red) and correct using difference of previous F and G:

 
 

4) Solution given by red dots. Repeat steps 

2 and 3 until desired tolerance reached:

Take home: parareal converges in k < J iterations
→ approx. speedup = J/k
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(IV) GParareal

The predictor-corrector limitation
 Corrections based on single previous iteration  →  all other solution information is ignored.
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Our research: improve corrections using probabilistic methods to reduce number of iterations k. 

5/8

Model using a GP emulator trained on all 
previous evaluations of F and G!

(which returns a Gaussian RV)

We approximate the RV by taking its expected value.

New update rule

This ignores uncertainty in the GP  →  open problem
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Iterations until convergence k (with legacy data)

Now we use legacy data to pre-train the emulator
and solve faster!

Step 1: Run GParareal with the original initial condition.

Step 2: Store the F and G solution data (= legacy data).

Step 3: Pre-train emulator using legacy data
and then solve for new initial value.

7/8



(V) Conclusions and future work

Advantages 
● can converge in fewer iterations than parareal → faster wallclock time.
● solutions maintain accuracy wrt parareal, even for chaotic systems.
● GP can be pre-trained using legacy solution data → improves speedup further.  
● can solve problems that parareal cannot (i.e. where it does not converge).
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Advantages 
● can converge in fewer iterations than parareal → faster wallclock time.
● solutions maintain accuracy wrt parareal, even for chaotic systems.
● GP can be pre-trained using legacy solution data → improves speedup further.  
● can solve problems that parareal cannot (i.e. where it does not converge).

Drawbacks/open problems
● Are standard out-the-box GP emulators enough?

→  can we use better ML/PN methods to learn the (high-dimensional) correction?
● Approximating the correction by the expected value of the GP ignores all uncertainty.

→  currently we obtain point estimate solutions.

→  can we quantify uncertainty to develop a truly PN method?
● Is it worth developing developing a time-parallel PN method?
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Thank you for listening! Questions?



(IV) GParareal: additional results

Iterations until convergence k Speedup

FitzHugh-Nagumo model

Accuracy vs. time
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various initial values



(IV) GParareal: additional results

FitzHugh-Nagumo model

Now we use legacy data to solve for a new
initial condition faster!

Accuracy vs. time (with legacy data) Step 1: Run GParareal with on the original initial condition.

Step 2: Store the F and G solution data (= legacy data).

Step 3: Pre-train emulator using legacy data
and then solve for new initial value.



(IV) GParareal: additional results

Rossler system

Solutions in phase space Accuracy vs. time
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Rossler system

Speedup (with legacy data)Iterations until convergence k (with legacy data)
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